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Executive Summary

The scattering from a space station cylinder has been modeled using physical optics

with no assumptions except the form of the current induced on the surface of the cylinder.

The computations were performed over a typical remotely piloted CTV auto-rendezvous and

capture trajectory. During most of this trajectory, the GPS system will be used to remotely

pilot the CTV. The optical guidance system will take over sometime before there is 100

meters between the CTV and SSF.

Rimulztinn Methncl_

Data has been collected using this simulation model for a span of possible geometries.

The geometry is defined by (1) the angle between the GPS satellite and the axis of the

cylinder, and the angles (referenced by the plane containing the GPS satellite and the SSF)

from SSF to the earth. Once the scattered field is found, the RCP component in the direction

of the CTV is determined and normalized relative to the signal strength of the direct signal.

The data indicates that the path difference between the direct signal and the scattered

signal is less than 300 meters during the final stages of AR&C maneuvers, and during isolated

sections of the trajectory when the GPS satellite, CTV, and SSF are approximately collinear.

The scattered RCP signal rises slowly during the final stages of AR&C maneuvers to

maximum values of approximately + 2 dB or -4 dB for end-on approach and side approach,

respectively. These values are only for particular locations of the GPS satellite, and the data

for other locations are 10 to 20 dB below this maximum.

During the earlier stages of AR&C maneuvers when the three objects are roughly

collinear, there are three scattering mechanisms: specular reflection; forward scattering; and

forward scattering with an anomalous peak. Specular reflections have peaks within the range

of -20 dB to -30 dB. Forward scattering is smaller with maximum values near -35 dB. The

scattering near the anomalous peak has a maximal value of -44 dB.

Alternative .qirnulatinn Teehniqtms

A method of moments solution for a two-dimensional cylinder has been computed.

The method of moments makes no approximations. The results indicate that the physical

optics current is a good approximation when compared to the exact numerical solution.

However, only one linear polarization has been investigated, and it is well known that the

other linear polarization (to create RCP) has a strong discontinuity. This is the source of the

anomalous peak mentioned above.

The use of GTD and PTD has also been investigated. It has been found that GTD

would not be appropriate due to the large distances involved. The use of PTD is a natural

extension to the work accomplished in this report since PTD is a correction to the physical

optics approximation and does not require smaller distances.

iv



I. Introduction, Summary and Key Conclusions

1.1 |ntr(_luc.tinn

The proposed use of a Cargo Transport Vehicle (CTV) to carry hardware to the Space

Station Freedom (SSF) during the construction phase of the SSF project requires remote

maneuvering of the CTV. The CTV is not a manned vehicle. Obtaining the relative positions
of the CTV and SSF for remote auto-rendezvous and capture (AR&C) scenarios will rely heavily

on the Global Positioning System (GPS). The GPS system is expected to guide the CTV up to

a distance of 100 to 300 meters from the SSF. At some point within this range, an optical

docking system will take over the remote guidance for capture.

During any remote guidance by GPS it is possible that significant multipath signals may

be caused by large objects in the vicinity of the module being remotely guided. This could alter

the position obtained by the GPS system from the actual position [1]. Due to the nature of the

GPS signals, it has been estimated that if the difference in distance between the Line of Sight

(LOS) path and the multipath is greater than 300 meters, the GPS system is capable of

discriminating between the direct signal and the reflected (or multipath) signal. However, if the

path difference is less than 300 meters, one must be concerned.

This report details the work accomplished by the Electromagnetic Simulations Laboratory

at Marquette University over the period December 1993 to May 1995. This work is an

investigation of the strength and phase of a multipath signal arriving at the CTV relative to the

direct or line of sight (LOS) signal. The signal originates at a GPS satellite in half geo-stationary

orbit and takes two paths to the CTV: (1) the direct or LOS path from the GPS satellite to the

CTV; and (2) a scattered path from the GPS satellite to the SSF module and then to the CTV.

1.1.1 Background

The path that the CTV takes on approach to SSF is shown in Figure 1-1. The initial phase

brings the CTV within 2 km in altitude and 37 km behind the SSF orbit. The SSF orbit is

represented by the line VB_. Va_ is actually not a straight line, but can be represented as such

for this discussion. Since the CTV is at a lower altitude, it will orbit the earth faster than SSF.

Thus, the next phase of approach is parallel to VB_ for approximately 37 km.

The most fuel-efficient maneuvering is done by bums that result in 2:1 ellipses relative to

Va_ with the major axis of the ellipse parallel to V_. The first CTV bum results in an elliptical

orbit up to VaAR. However, due to the motion of SSF during this bum, the relative trajectory of

CTV is assumed to be circular. After this bum, CTV is on Va_, and is 2 km ahead of SSF.

The remaining steps on approach are two elliptical burns, one that brings CTV within 300

meters of SSF, and another that places the CTV within 100 meters of SSF. The final approach

is taken directly along VBAR [2].
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Theglobal positioning system consists of a number of satellites at half geo-stationary orbit

with highly accurate docks. A minimum of four readings are usually necessary for a receiver to
determine its location. The satellites used could be located anywhere in the LOS view of the

receiver. Since the GPS satellites are at half geo-stationary orbit, they are also moving; however,

the velocity of each is small enough to be ignored [3].

The GPS signals consist of a spread spectrum sequence or pseudo-random (pr) code that

holds important information and is typically a very weak signal. Extensive filtering is used to

determine the data transmitted along with the time of arrival. The carrier frequencies of interest

are I.,i=1.57542 GHz and L2= 1.22760 GHz [4]. In this report, L1, L2, shall be denoted as L_,

1_,2, respectively.

The presence of a large object in the vicinity of a GPS receiver (such as on CTV) will

scatter the GPS signal from the satellite in many directions. A portion of this will also reach the

CTV. This will result in a delayed copy of the original signal at the GPS receiver on the CTV.

The delayed copy is called a multipath (M/P) signal. The delay of this signal can be estimated

as the time difference between the direct signal and the delayed signal. The time difference can

be converted to a distance using the speed of light in vacuum. This distance shall be denoted as

the path difference.

If the path difference is greater than 300 meters, the GPS receiver is able to overcome the

effect of multipath via filtering. If the path difference is less than 300 meters, the multipath signal

may cause an incorrect location reading on the receiver [5]. Given the relative distances between

and velocities of the SSF and the CTV, it is essential that errors be avoided.

It is also true that the strength of the multipath signal relative to the direct signal is very

important. If the multipath signal is too strong, then the GPS receiver will incorrectly determine

its location. While it is presently unclear how strong a signal must be to cause an error, a study

of how strong the signal shall be is important to the determination of how safe AR&C maneuvers

will be.

Determination of the magnitude and phase of multipath during AR&C can be simulated

using a GPS signal simulator [1,2]. By presenting the simulator with this information, an estimate

from the receiver of its location can be verified. This investigation would provide valuable

information regarding the difference between "dangerous" and insignificant multipath.

1.1.2 Objectives

The objectives of the work accomplished were to obtain the strength and phase of the

multipath signal relative to the direct signal from the GPS satellite. This has been accomplished

for a single cylinder the size of an SSF module.
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1.1.3 Methods

In this section the approach used to estimate the strength of the multipath signal is

reviewed. The solution is found along the CTV trajectory and includes the polarization of the

reflected wave reaching the CTV, since the receiver is polarization sensitive. In addition, the

signal is found relative to the LOS or direct path. No assumptions are made here regarding the

locations of SSF, CTV or the GPS satellites.

The problem is fundamentally a bistatic radar cross section (RCS) problem. In radar, a

signal is transmitted, scattered off a target and this scattered field is then used to locate the target

[6]. In this work, the transmitted signal is the signal from the GPS satellite, the target is the SSF

module, and the receiver is the CTV. However, for the purposes of this work, the important

information is not the location of the target, but instead how strong the scattered signal is when

compared to the direct signal.

Techniques for computing the scattered field from an object are generally broken into

various groups according to the size of the scatterer in wavelengths. Very small objects can be

approximated as a dipole moment with strength and direction [7]. As the object becomes larger,

up to a few wavelengths, the method of moments (MoM) is applicable [8]. Once the size reaches

the upper boundary of MoM, the finite difference-time domain (FD-TD) [9] method can be used.

However, the size of the SSF is far too large for any of these techniques to be practical on

presently available computers. Note that the SSF modules are over 10_. in radius and over 36X

in length (where _. is the wavelength).

For very high frequencies (as k approaches infinity, where k is the wavenumber 2_/X),

other techniques are used based on the asymptotic expansion of Maxwell's equations. This family

of methods, known as GTD, UTD, and UAT [10-12], are based on corrections to geometrical

optics [13]. The advantages and disadvantages are discussed in detail in Section 4.2. This

approach was not chosen and would not be applicable due to the large distances involved.

An alternative approach that is very widely used in RCS computations from large ships and

aircraft is physical optics (PO). In PO [14], the current that is induced on the surface of a

perfectly conducting scatterer is approximated as:

jr = 2rfxR _ (1)

for the illuminated portions of the object, and J, is zero elsewhere.
field and _ is the outward normal unit vector from the surface.

electric field E'(r) due to J,(r') is:

Z v_v_fI'r. (=')1 "'*''-'''
z ° (x) . 4n-it_eo s, Ix-x'l ds'

is the incident magnetic

Once J, is found, the scattered

(2)
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where to = 2_f (f is the frequency), % is the permittivity of free space, r is a vector from the origin

to the observation point, r' is a vector from the origin to a point of current, S' is the surface of

the object, and the curl operations only act on the unprimed coordinates.

The direction of propagation of the scattered field will be used to compute the RCP

component of the scattered field. This will allow comparison of the direct signal and the M/P

signal.

The path of the CTV has been parameterized in a relative coordinate system (relative to

the SSF cylinder). The code steps through the trajectory of the CTV and computes the M/P

signal. If the path difference between direct and multipath signals is greater than 300 meters, the

computation is not performed. The code returns zero multipath signal strength. The complete

code is provided in Appendix 7.1.

Section 4 of this report discusses alternative approaches to the basic electromagnetic

problem. A two dimensional simulation of scattering from a cylinder is shown to provide further

insight into the scattering mechanisms present for this problem. The solution is found using the

exact integral equation (electric field integral equation, or EFIE) in two dimensions [15]. A

discussion of the basis for the solution and the results relevant to the cylinder problem are

presented in Section 4.1. Included in this report (Appendix 7.2) is a Technical Report from the

Electromagnetic Simulations Laboratory at Marquette University (MU-ESL) which describes the

theory and code developed to solve for scattering from two-dimensional perfect conducting

objects.

The theory of UTD [10,11] is reviewed in Section 4.2 for informational purposes.

Included in this report (Appendix 7.3) is a Technical Report from MU-ESL which describes in

great detail the theory and applications of UTD. The theory of the physical theory of diffraction

(PTD) [16] is also reviewed in Section 4.3 along with a discussion of the relative applicability of

PTD and GTD.

1.2 .qummary of Ra._ult_

1.2.1 Issues Regarding the Problem Definition

The scattering from a cylinder has been computed using the physical optics approximation

for the current. No other approximations or assumptions have been made including no

assumptions regarding the far field or Fresnel field approximations.

The integrations required to obtain the scattered field have been computed numerically

using an N dimensional Romberg integration. The total scattered electric field is then projected

onto the RCP component in the direction of propagation only. The direct or line of sight signal

is then used to compute the relative strength and phase of the scattered field.
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Thetrajectoryof theCTV hasbeenparameterizedinto 4,214 pointsthat arecalculatedfor
eachof thegeometriesinvestigated.The motionof the CTV between points is small enough for

the magnitude data (dB down from direct signal) to appear very smooth; however, because of the

distances and wavelengths involved, the phase of the scattered field relative to the direct signal

varies very rapidly.

1.2.2 Simulation Results

The results of this numerical investigation include data for a CTV approaching the SSF

with the SSF orbiting with the axis along the direction of travel (parallel axis), and with the axis

perpendicular to the direction of travel (perpendicular axis). Figures 2-5(a,b) show the

perpendicular and parallel axis cases, respectively. For the parallel axis approach, the data

suggest that near the SSF, the scattered signal is 2 dB above the direct signal, whereas for the

perpendicular axis approach, the scattered signal is 4 dB below the direct signal.

There are a number of geometrical situations that result in path differences less than 300

meters even though the SSF and CTV are separated by a rather large distance. For these cases,

the scattering mechanisms can be broken into three groups: (1) the specular reflection

components; (2) the forward scattering components; and (3) an anomalous peak component.
These three mechanisms are listed in descending order with respect to strength and in descending

degrees of accuracy. In short, the specular reflection component is computed the most precisely

and is the strongest component to scattering from the cylinder.

1.2.3 Alternative Techniques and Extensions of the Present Solution

A number of alternatives have been investigated with the intent to either reinforce what has

been accomplished or to plan for future investigations of possibly more complex problems. The

first of these alternatives is the computation of scattering from a circular cylinder using the method

of moments in two dimensions. The incident field in this case is linearly polarized. The solution

illustrates the usefulness of physical optics and the nature of the corrections obtained when using

the physical theory of diffraction.

The use of GTD has been exhaustively studied and Appendix 7.3 is a report from the

Marquette University Electromagnetic Simulations Laboratory on GTD and addresses in particular

the scattering from a cylinder. In addition, a brief introduction to PTD is presented as a more

viable solution method. GTD in fact requires that the source or the observation be close to the

scattering object.
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1.3 Kay Cnnclu_inns

1.3.1 Conditions Pertaining to 300 Meter Path Difference (or less)

Consider the distances that are involved in the computation of the path difference between

the LOS and M/P signal paths. The GPS satellite is 20,240 km above the earth, the SSF is in

LEO at 331 km above the earth, and the CTV is rising and approaching SSF by the path shown

in Figure 1-1. Computations have been made that determine the relative orientations that result

in a path difference of 300 meters or less. The conclusion is that only in cases where the three

objects are almost collinear does the path difference become too small. Considering the large

distance to the GPS satellite, this is very reasonable. See Figure 1-2. Since the CTV and SSF

are very close to each other through much of the approach, it is conceivable that a GPS satellite

could be aligned with the line defined between SSF and CTV.

1.3.2 Multipath Signals Before the CTV Reaches VSAR

The 300 meter path difference requirement is broken in some places along the trajectory

before the CTV reaches Vs_. There are two possibilities: either forward scattering where the

scattered field appears to have passed through the SSF, and specular reflection where the scattered

field appears to bounce off the SSF. Obviously, all cases of forward scattering imply that the

three objects are collinear. The specular reflections can only occur within the 300 meter

requirement if the triangle as shown in Figure 1-2 is thin enough.

The specular reflections have nominal values near -35 dB with peaks reaching up to -20

dB. The forward scattering contributions have nominal values that are considerably smaller (-45

dB) with no strong peak. Because of the 300 meter path difference requirement, most of the

notable multipath signals have a short duration. The exception to this is the case where the 37 km

linear portion of the trajectory is almost in line with the line defined by the GPS satellite and the

SSF. For this case, the nominal signal values are roughly -55 dB.

1.3.3 Multipath Signals Once the CTV Reaches VSAR

Once the CTV reaches VBAR, the distance between SSF and CTV is still 2 kin, which is

still in the far field. However, during the first elliptical burn, the CTV enters the Fresnel region,

and the data appears less regular, making generalizations such as in the previous section more

difficult and less meaningful. However, in this phase of the trajectory, there is an almost

monotonic increase in signal level near the -20 dB mark. This value increases at a faster rate once

the CTV reaches the final approach portion of the trajectory. At this point, the signal power

increases to -4 dB for perpendicular approach or + 2 dB for parallel approach. Within roughly

40 meters of the SSF, the CTV is truly in the near field, and no longer in the Fresnel zone.

However, the optical guidance system is expected to assume control before the CTV reaches a 100
meter distance from the SSF.
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Figure 1-1. Graph illustrating path of CTV toward SSF.
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Figure 1-2. Typical scenario where all three objects are nearly collinear.
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2. Problem Definition

In this section the methods used to estimate the strength of the multipath signal are

developed. The solution includes the polarization of the reflected wave toward the CTV since the

receiver is polarization sensitive. This signal strength is compared to the direct signal. The CTV

path has also been parameterized with a distance between data points that is small enough to

provide smooth results.

2. l Phwqie.al Onti_.q .qolutinn
d IL

2.1.1 On the Far-Field Approximation [17]

A common approach in obtaining the radiation pattern of an arbitrary antenna is by

calculating the electric and magnetic field components from the magnetic vector potential A,
where:

11o _ (r') e-Jkl"'z'l

Ir-r'l dr'
g s

(1)

and J, is the electric current density, Ir-r' I is the distance from a point on the source to the

observation point, and/_o is the permeability of free space.

In order to simplify the discussion, the radiation pattern from a dipole antenna of finite

length will be considered. At some observation point r, A is given by:

I=-='I---R=v/(x-x') 2.(y_y,) 2 (z-z') 2 (2)

If rz = x 2 + ),2 +z 2 and z = rcos0, then:

R=%/r 2-2rz 'cos0.z ,2 (3)

Using a Taylor series approximation on R in (3), one has (assuming r> > z'):

,. 12 . _3
i '_ • 2 '_ ' 2R=r-z cos0._sln 0._sln 0cos0 ....

2r 2r 2
(4)

The first term only is used in the denominator of (1), and up to the second term is used in the

exponential for the far field approximation. To determine the distance where the far field begins,

the third term is used, and results in the familiar relation:
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2D 2
_>__ (5)

X

where D is, in general, the largest diagonal dimension of the radiator.

For the Fresnel region, the first three terms of (4) are retained, and by taking the

derivative of the last term in (4), the boundary between the near field and the Fresnel region can

be shown to be:

i D3 (6) =0.62

It is important to note that the above expressions as developed are for an aperture antenna with

the observation considered to be a point source.

Frequency Far Field Range (m) Fresnel Range (m)

L 1 r > 1,113.3 46.9 < r < 1,113.3

L 2 r > 867.5 41.4 < r < 867.5

Table 2-1.

Field zones for frequencies of interest.

The reason for detailing the far field, Fresnel field, and near field regions is that the CTV

trajectory passes through each of these regions when following the AR&C procedures. Table 2-1

shows the botmdary between the regions for L_ and L 2. As will be discussed, no approximations

of this nature have been used.

2.1.2 Definition of the Geometry

Consider the cylinder of Figure 2-1. The cylinder has radius a and length 2L. The

cylinder size was chosen according to the latest known dimensions of the SSF: 2.5 meters in

radius and 9 meters in length. The axis of the cylinder is along the z axis. Without loss of

generality, the GPS receiver can be chosen in the y-z plane at an angle 0 in the usual spherical

coordinate system where 0 is restricted to be between 0 and 90 °. The vector _ represents the

direction of propagation of the wave incident on the cylinder from the GPS transmitter (note that

the location of the earth, and hence the positions of VB_ and the CTV are not specified yet). As

shown, the incident magnetic field has a component H z in the y-z plane, and an x component H,.
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Thesetwo componentswill be used to represent the RCP wave incident on the SSF.

2.1.3 Theory of Physical Optics

In PO [14], the current that is induced on the surface of a perfectly conducting scatterer

is approximated as:

a'=_ 2dxH _ (7)

for the illuminated portions of the object, and is zero elsewhere. H i is the incident magnetic field

and _ is the outward normal unit vector from the surface. Once J, is found, the scattered electric

field E'(r) due to J,(r') is:

z v_vxf[_ tr')] e-'*''-''' as' (8)
E" (r) 4 lqJ _eO s' I=-='1

where % is the free space permittivity, k is the wavenumber, to is the angular frequency, and the

curl operations only act on the unprimed coordinates.

To formulate a structure for the numerical procedure, consider the vector:

1 f[J (r')]e '*l.-z'lds,
,F t.r) - 4rljoe° s' I=-='1

(9)

where

Z°-VxVxy (10)

The vector F is defined by three scalar integrations, which can be performed numerically using

any of a variety of standard procedures such as a Riemann sum or Romberg integration [18]. The

number of terms in these sums will be rather large, due to the size (in wavelengths) of the object.

However, once F is found, the curl-curl operation must be performed. This is a

differential operation that can be approximated by central finite differences. For each point that

the scattered field is desired, 39 components of F over 19 locations would be required.

It is more efficient to not compute the curl-cud operation in a finite difference scheme, but

rather to bring the curl-curl operation into the integrand:

=" It).cfi3tr', I[VxVx(,_,_)]_s' (11)
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where

2njo)e o

e -#klr-z'l

J,_-r'l

(12)

and the unit vector 6j is the direction of the current. This is the method used here.

2.1.4 Specific Integrals Solved for Cylinder

The analysis shall begin by combining the geometry of the cylinder with the PO

formulation (11). Recall that the incident wave has a propagation vector in the y-z plane and the

incident magnetic field has two components, one in the x direction, and one in the plane of the

page. The angle of incidence 0 is between 0 and 90 °. This angle is the angle between the SSF

cylinder axis and the GPS satellite where SSF and the GPS satellite are both in the y-z plane. The

operating frequency may be either Ll or I_,2.

The unit vector describing the incident direction of propagation is:

a7 . ¥%-5¢ (13)

where:

V/_2÷52.1 (14)

The direction of Ha can be found by noting that it is perpendicular to both the x direction and the

direction of propagation:

dir H2. ¢ xa'J (15)

The magnetic field can be written in RCP polarization as:

lrt_t.ffl[ ¢..j v ¢° j _ e_]e ",1¢'¢:'t

By performing the dot product in the exponential and noting that:

(16)

(17)

the incident magnetic field can be written as:
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H L . HiI_.jy_÷j_]e-Jk[YY-SZ)
(18)

One can compute the surface current as postulated by PO and given in equation (7). The

only portions of the cylinder illuminated by the incident wave are the top and half of the curved

surface. For the top,

tf.E£ (19)
z

and the surface current on the top is given by:

J .2Hle-:Ik(YY-Sz)[_-jS_] (20)

with limits of:

L
Zmm

2

%/_-_ 2 < a

(21)

For the curved surface,
A
n=e

p (22)

and the surface current on the curved surface is given by:

J =2ff l e':l*tvy-Sz,[-jy _. .. (-sin,÷j _cos*) _] (23)

Using the induced currents (20), (23), the following two integrals need to be solved:

E " (r) .2HICe e -J_cps±"_ rl (r, r') pdpd_

p-o 0-o

(24)

on the top of the cylinder, and:

t.
-_ 0

E." (7:)-2IflC f f eJklYPC°a'-Sz)l ') (r,,lr')pd_dz
L @--n

Z----
2

(25)

on the side of the cylinder, where:

rl (,:, z') .VxVx ($,#) (26)
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By use of various identities and Green's theorem formulations, a closed form expression for 'i

can be obtained for an arbitrary direction of the current. This computation has been performed.

The components of ,1 are:

_[_ (e [ (y-y')26x+ (Z-Z')261o262]-e(x-x') (y-y') 61-e_, (x-x') (z-z') 61)

e_[_ (-e (x-x') (y-y') 6a.e [ (x-x')Z_i÷(z-z')26i*262]-ej,(y-y') (z-z') _i) (27)

e_[(_ (-e (x-x') (z-z') 61- _ (Y-Y ) (z-z') _a.ej,[ (x-x')261*(Y-Y')26x÷262])

where:

R 3

ljk 1_2 R R 2

(28)

and

Jr-r'J (29 )

a'lr-='l

and

efe jx_÷e jy_÷e jz_ (3O)

which is a constant vector with respect to the unprimed coordinates. The direction of 6j is

represented by the terms enclosed by brackets [ ] in (20) and (23).

The cylinder size used is: 2.5 meters in radius and 9 meters in length. The N-dimensional

Romberg integration routine as found in [18] has been used to perform the integrations in

computing (24) and (25). The integration routine has a tolerance set to 0.1 percent.

2.2 Datail_ of Problem Statement

2.2.1 RCP Component Calculations

The computations derived up to this point will provide the magnitude and phase of the x,

y, and z components of the scattered field. Since the receiver on the CTV will be accepting only

the RCP component of the scattered field, the electric field computed as the sum of (24) and (25)

should be converted to only the RCP component.

2-6



The RCP component of the scattered field in the direction of the CTV can be found by first

converting the Cartesian components to a spherical vector:

Er. ExsinOcos_+ EysinSsin_* EzcosO

Ee.ExCOSSCOS_ +EyCOS% sin _ -Ezsin8 (31 )

E_- -Exsine +Ey cos¢

Once the spherical components are computed, it is necessary to find the RCP component in the

direction of CTV. The r component is dropped, and the other components must be a sum of RCP

and LCP terms. This can be written as:

A A e iv2Eeee÷E, e4,'Otl ej¥* (ee*je#)"_2 (ee-Je,) (32)

where the first term on the fight side is the RCP term and the second term is the LCP term. By

manipulating (32), it can be shown that the RCP magnitude (a_) and phase (7_) are given by

1
al siny1" _ (Eo,I-E_,r)

or (33)

1

_Ic°syI" _ (Za,_+Z_,i)

and

tany_ -Ee,i+E_,r (34 )
Ee,z+E_,j

where the subscripts i and r denote imaginary and real parts, respectively. The magnitude of a 1

is found using one of the relations in (33), according to numerical stability. In other words, if

sinTl is too small, then the second relation is used. Equations (33) and (34) are used to determine

the RCP component of the scattered field at the CTV.

2.2.2 Reference Field Calculations

The direct signal from the GPS satellite to the CTV is computed by providing additional

information concerning the geometry of the problem. The information necessary is the angle of

the earth with respect to the cylinder coordinates. Figure 2-2 illustrates the coordinate system

used. All quantities in the figure labeled by an "r" are vectors.

The radius of the earth has a mean value of re = 6,370,949 meters. The length of r0 is

22,240 km+ re. The length of rs is 331 km+ re. It is necessary to find the location of the GPS

satellite in the SSF coordinate system. This position is defined by the vector rg and the angle 0.
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rc is the position of CTV in the SSF coordinate system. The vector r, defines the position of the

earth (in the SSF coordinate system) referenced by the angles % and dh_. From the figure,

Ir,-z.I- Ir,I (3 5 )

In addition, defining

(36)

and

r,. x d}x÷ys_y.Z4_ z (37)

it can be deduced from Figures 2-1 and 2-2 that xs=0, and yg=-zgtan0.
solved is:

]r.l-_/x:. (-z tan0-y,)2* (z_r _z )2

Then, the relation to be

(38)

The values of zg and Y8 determine the location of the GPS satellite in the SSF coordinate system.

The referencefor the incident field is at the origin of the SSF cylinder. At this location,

is 1/377 A/m and E i is 1 V/m. At the GPS satellite, the magnitude of E is re, and therefore,
at the CTV:

r

II"tl'cr"I I (39)

The phase is determined easily by finding the distance back to GPS and then to CTV:

arg{ Et, _ } - e :I*( I=,l-lz,-r.I I (40)

Thus, the dire._ signal is:

]r,I
z ,- Ir,-z.I

e .fk t Ir, l-I=,--'_.l I (41 )

where the direct signal is RCP.

Preliminary tests of the code have been performed. The geometry has 0 = 0° which implies

that only the top disk of the cylinder is illuminated. The earth is at 08= 180 ° , 4%=90 ° . This

means that the GPS satellite, SSF, and the earth form a single line. The CTV is swept along this

line (not the trajectory) from 300 meters above the SSF to 300 meters below SSF. This example

illustrates the shadowing of the CTV signal by SSF. The magnitude of the ratio of (ideal) direct
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signal to multipath signal is shown in Figure 2-3, and the phase angle (in degrees) is shown in

Figure 2-4. Note that the phase varies much more quickly near SSF, where the CTV trajectory

is in the near field.

2.2.3 Parameterization of CTV Trajectory

An assumption has been made for the geometry of the SSF with respect to the earth. Only

situations where the module is one of two positions seem plausible. These two situations are

depicted in Figure 2-5(a,b). In Figure 2-5(a), the angle _ may not appear to make a difference;

however, recall that the GPS satellite is in the z-y plane (which is the plane of the paper). In

Figure 2-5(b), the geometry again may appear to not require specification of all angles, but it is

necessary because of the relative (and fixed) location of the GPS satellite.

The trajectory shown in Figure 1-1 has been parameterized beginning at the location 2 km

below Va_ and 37 km behind the SSF. Motion is along the trajectory in steps of 10 meters in

x, where x is parallel to Va_. Thus, for each change of Ax = 10 m, the position of y is computed.

This parameterization results in 4,214 points along the trajectory, where the last point is at SSF

and is not computed. As will be seen in the results, the data points are sufficiently close together

to allow for very smooth magnitude graphs. No granularity in the magnitude results has been

observed.

The first 3,700 points are equally space along the line from the start to the first burn. This

set of points is called "line 1". Points between 3,700 and 4,014 are on the approximately circular

approach to VaAR. These points are on "circle 1". The next 170 points are (up to 4,184) are on

the first elliptical approach and are called "ellipse 1" The second elliptical approach is 20 points

("ellipse 2") up to 4,204. The remaining 10 points are equally spaced on the final approach,

denoted as "final approach". Table 2-2 summarizes the points with respect to the portions of the

trajectory.

Portion of Trajectory

Line 1

Circle 1

Ellipse 1

Ellipse 2

Final Approach

StartingPoint Number Ending Point Number

1 3,700

3,700 4,014

4,014 4,184

4,184 4,204

4,204

Table 2-2

4,214

Trajectory point numbers for portions of trajectory.
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Figure 2-2. Geometry for computation of direct signal. Note definition of 0 E and d_
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Figure 2-5(a).

of approach.
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Geometry for 0E= 180 °. Note that changing 4_E changes the angle
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Figure 2-5(b). Geometry for 0E = 90°.

0E= 90 °

Note that _ is -90 ° in this figure.
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3. Simulation Resultsand Discussion

The physical optics solution for the geometry of Figure 2-1 is given in this section for

angles 0 from 0 to 90 ° in steps of 30 °, and dp, from 0 to 90 ° also in steps of 30 °. The data is for

frequencies L_ and L z for 0E at 90 ° (Figure 2-5b) or 0 E at 180 ° (Figure 2-5a). Recall that 0 is the

angle shown in Figure 2-1 that defines the location of the GPS satellite, the angles 0 E and _bE
determine the direction from the SSF module to the center of the earth. Note that the GPS

satellite is always in the y-z plane and that the rotation of x and y by <1%does not affect the SSF

cylinder, only the location of the GPS satellite. As will be seen, the CTV always approaches the

GPS satellite. Situations where the CTV is moving away from the GPS satellite have not but

could easily be investigated.

3.1 Methcwl nr Nnmennlatu_ for Data Pr_.._antaticm

Each trajectory is broken into 4,214 points. These points consist of 3,700 along the initial

line of approach at 2 km below VB_. The first burn is modeled as a circle, and approaches V_

2 km from the SSF. This is points 3,701 to 4,014. The first approaching ellipse is points 4,015

to 4,184, and the second ellipse is from 4,185 to 4,204. The final approach is a straight line of

10 points from 4,205 to 4,215. The point 4,215 is not computed since it is the dock location.

The following terminology has been used to identify common items. Points along the

trajectory shall be denoted as tp-1 to tp-4014. The GPS satellite, the space station Freedom, and

the CTV will be referred to as GPS, SSF, and CTV, respectively. The term path difference will

be abbreviated to p/d, and the 300 meter requirement is "broken" if the p/d is less than 300

meters. The 300 meter requirement will be called the 300 requirement.

3.2 l')e_ge.rintion nf Format for Data Pr_._entaticm

Each set of data has been grouped as a variation in 0 for fixed 0E, 4%, and frequency. The

data is plotted as dB down from the direct signal as a function of the point on the trajectory. The

different maneuvers along the trajectory are also indicated on each figure. Only data with a path

difference less than 300 meters is shown. To speed computations, data with a p/d above 300

meters was not calculated.

The top graph of each figure represents the results on approach from roughly the middle

of the first elliptical approach near Va_, and ends 10 meters before docking. The bottom graphs

illustrate one of two effects. In most figures, the end of line 1 and the beginning of circle 1 is

shown (case 1) to illustrate scattering that is present and has a p/d less than 300 meters. The

second possibility was used if no data in case 1 is present. For case 2, the bottom graph shows

data from the beginning of line 1 up to circle 1, tp-1 to tp-3810. However, for some cases (such

as 0E = 90 ° , 4% = 90 ° , f = I_,z) data was also present from the beginning of line 1 and appears at

the left end of the bottom graph. Note that no data was collected between tp-3810 and tp-4150

because of the 300 requirement.
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Section3.3 will summarizethe resultsin acursoryfashion,andSection3.4 will provide
a detaileddescriptionof thescatteringmechanismspresentalongwith a moredetaileddescription
of the results.

3.3

For the case of 0E=90 °, refer to Figure 3-1. Note that 0=0 is the same orientation for

each value of dpE. It is shown on each of Figures 3-2 to 3-9 for comparative purposes. In

addition, values of qbE between 90 and 180 ° provide identical results due to symmetry. As

mentioned in Section 3.2, data for the z axis pointing to the right have not been (but could easily

be) computed.

During the final maneuvers (top graph of figures), the 300 requirement is broken later and

hence the data begins later as cl_ increases. This is independent of frequency. Except for 0 = 0,

the data has nominal peak values near -35 dB, until CTV is very close to SSF. The sharp rise in

data for 0 = 0 ° at tp-4204 is due to the polarization on true backscatter. The point tp-4204 is the

first point in the final approach. RCP backscatter is also RCP, and this situation breaks down

quickly off axis. For 0 = 0 °, the final approach is 1 to 2 dB above the direct signal except very

near SSF. Note also that scattering at 0 = 0 ° is due to the flat disk only.

Earlier in the approach (bottom graph of figures), the 300 requirement is broken in various

locations depending on the orientation of GPS, SSF, and CTV. In addition, for 0 = 0°, the 300

requirement is broken early in the approach. Nominal dB values for the early approach data are

-55 dB. The specular contributions vary in magnitude, varying from -35 dB to -20 dB at some

peaks.

For the case of 0E= 180 °, refer to Figure 3-10. Note that 0 = 0 is the same orientation for

each value of {1_. It is shown on each of Figures 3-11 to 3-18 for comparative purposes. In

addition, values of q_ between 0 and -90 ° provide identical results due to symmetry. As

mentioned in Section 3.2, data for q_ planes on the right have not been (but could easily be)

computed.

During the final maneuvers (top graph of figures), the 300 requirement is broken earlier

and hence the data begins earlier as tl_ increases. This is independent of frequency. The data has

nominal peak values near -25 dB, until CTV is very close to SSF. The rise at the end of the data

reaches values up to -4 dB.

Earlier in the approach (bottom graph of figures), the 300 requirement is broken in various

locations depending on the orientation of GPS, SSF, and CTV. In addition, for 0 = 0°, qbE= 0°,

the 300 requirement is broken early in the approach. Nominal dB values for the early approach

data are -55 dB. The specular contributions again vary in magnitude from -35 dB to -20 dB at

some peaks.
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The phaseof the scatteredsignalhasalsobeencomputedfor eachcase. The phaseis
plottedfor the caseof 0=0 °, 0E=180°, and cl_E=0 ° in Figure 3-19. The top graph is the phase

during the final approach, and the bottom graph is centered about the forward scattering null at

tp-3700. The phase does not in this case or in any other data sets illustrate any typical trends.

This is to be expected, since the distance traveled between any two points along the trajectory is

at least 10 meters, which is more than 30 wavelengths. Thus, the phase of the solution varies very

quickly.

3.4

3.4.1 Scattering Mechanisms

This section shall discuss in more detail the results that have been obtained for data along

line 1 and the beginning of circle 1 (which is the lower graphs in Figures 3-2 to 3-9 and 3-11 to

3-18). This information can be used to justify the solution found, and more importantly, to guide

the interpretation of future, and possibly more complex situations.

A very useful pair of antenna array patterns for the radar tracking engineer is the sum and

difference patterns. The sum pattern allows for rough location measurement by maximizing the

signal received. This is accomplished by adjusting the phase shift on the received signals until

their "sum" is maximized. The phase shift indicates the rough location of the target. At this time,

the elements on one side of the array are given an extra 180 ° phase shift to create a "difference

pattern". Then, the original phase shift is adjusted further to obtain the precise location of a

target.

These two patterns appear similar except for a major difference in the main lobe. The sum

pattern has a peak, but the difference pattern has a very sharp null. See Figure 3-20.

Two of the three basic effects discussed in this section are comparable to sum and

difference patterns. When the scattering is "forward scattering", the reflected signal appears to

travel through the target, and a deep null is present. See Figure 3-21. When the scattering is

"specular reflection", it appears as if the signal has bounced off the target, and the sum pattern

re,suits (with a large signal at the exact bounce angle). See Figure 3-22. Much of the difference

between forward scattering and specular reflection is due to the RCP nature of the incident signal.

Note that forward scattering is not truly a difference pattern, since the sidelobes typically fall

toward the null at the center. In a difference pattern, the nulls increase toward the center of the

pattern.

The third basic mechanism is a partial flaw in the electromagnetic development that is

common to all PO and PTD computations, which will be called an anomalous peak (compare to

the Ufimtsev singularity, [19]). This singularity occurs because of the discontinuity in PO current

on a smooth surface. See Figure 3-23. The scattering is depicted as forward scattering, but in

fact a small peak occurs. This peak is due to the discontinuity in one component of the current.
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Considerthe case 0E= 90°, ch_= 0°, f__ L_ (Figure 3-2). Note that all of GPS, CTV and

SSF are in the plane of Figure 3-1. In the bottom graph, one can see (centered around tp-3700)

a forward scattering pattern except for the small peak at the center. This peak is an example of

the anomalous peak since at tp-3700 GPS, SSF, and CTV are perfectly aligned. This is forward

scattering, but because of the edges of the curved surface of SSF, one sees the anomalous peak

at the center of the pattern (center refers to symmetrical center of the pattern).

For the same figure, when 0 =60 °, a truer forward scattering pattern results, and at

0 = 30 ° , an exceptionally clear difference pattern is present. The nulls in these are illustrated in

the figure. As 0 changes, the angle of forward scattering changes, and the locations of the

forward scattering nulls follow exactly. This was checked by looking at the precise trajectory

point numbers. At 0 = 0 °, the triangle formed by GPS, SSF, and CTV is very thin at tp-1 and

widens as the point number increases. Near the beginning of circle 1, the 300 requirement enters

and no data is shown. Similar results are seen for f = L 2.

As ¢X increases from 0 to 30 °, the forward scattering is dominated by specular reflection

due to the angle of GPS relative SSF and CTV. Now, peaks in the specular reflection clearly

show the 2:1 distances between 0---90 °, 60 °, and 30 °. As _ increases further to 60 ° and 90 ° ,

the p/d is above 300 meters, and the specular reflections do not appear. For these cases,

representative data for tp-1 to tp-3700 are shown.

Next consider the case 0E= 180 °, _=0 °, f=I_q (Figure 3-11). Note that all of GPS, CTV

and SSF are in the plane of Figure 3-10. In the bottom graph, one can see centered about tp-3700

a forward scattering pattern for 0 = 0 °. At tp-3700, GPS, CTV, and SSF are perfectly aligned.

Since the current is only due to the top disk, no anomalous peak results. Again, as 0 = 30° and

60 ° , the point of forward scattering shifts earlier in line 1, exactly matching the forward scattering

angles. In addition, for 0 = 90 °, the SSF, GPS, and CTV form a very thin triangle as before.

However, once _ = 30 °, much of the specular reflections and the thin triangle have disappeared

behind the 300 requirement. At c[_ = 90°, some of the specular reflections still persist at 0 = 90 °

and a small portion at 0 = 60 °. One does not see the anomalous peak at 0 = 90 ° because the

alignment is not present.

3.4.2 300 Meter Requirement

The 300 meter requirement was used to speed up collection of the data. In short, if the

path difference was greater than 300 meters, the code reported the p/d and moved on to the next

point in the trajectory. It is quite obvious that when GPS, SSF, and CTV approximately form a

line (in that order as shown in Figure 1-2), then the p/d will be small. This implies the

importance of calculating accurate forward scattering from SSF. However, in many cases

discussed in the previous section, specular reflection was the mechanism, implying a thin triangle

of non-zero area.

The calculation of forward scattering may be suspect due to the anomalous peak, but also
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becauseof the nature of the electromagnetic approximation. It just does not predict forward

scattered fields as well as a more rigorous solution. There are no good methods of estimating the

error, except to say it is not excessively large. In fact, the forward scattering is smaller than the

specular reflection components.

The calculation of specular reflection components, however, is more precise. This means

that the forward scattering may be a bit larger (or smaller) then the -45 dB nominally predicted,

but the specular reflections will be quite close to the values predicted.

3.4.3 Key Issues During Final Approach

During the first phases of the trajectory, CTV is never closer than 2 km from SSF. At the

end of circle 1, the distance is 2 km, and CTV is still in the far field. However, during the first

or second ellipse, the 300 requirement is broken and data begins appearing. At about the same

time, during the first ellipse the CTV leaves the far field and enters the Fresnel region. In some

of the data sets, the periodic, side lobe structure is present. However, once within the Fresnel

region, the regularity is less obvious. The Fresnel region extends to the point where the CTV is

within 40 meters of the SSF. Assuming the optical system will assume control before the CTV

is less than 100 meters of the SSF, the GPS system will not be required within the near field

region.

Within the Fresnel zone, the data generally shows a slow increase with a few isolated nulls

in the data. Once very close to the SSF, the data shows a + 2 dB scattered field when the flat disk

or top of the cylinder is approached, and a -4 dB scattered field when the curved side of the

cylinder is approached. This is consistent with geometrical solutions to the problem in that the

radius of curvature of the scattered field depends on the curvature of the scatterer (from GO).

Thus, the curved surface tends to cause extra attenuation due to the finite radius of curvature in

one direction, but the flat plate does not increase the attenuation, since both principle radii of

curvature are infinite.

The solution used contains no approximations except for the current used. No other

approximations were used. Thus, our solutions are as aconite as the current we have used. In

the far field, the approximation of the current is very reasonable. However, as the observations

move closer to the scatterer, the approximation becomes less reliable. Certainly, in the near field,

the approximation for the current is suspect. However, in the Fresnel region, the current is still

reasonable, though the results are not as accurate as the far field calculations.

In the near field, there is very little in the literature to base any observations upon.

However, one sees in the data that the near field can cause some oscillations that are possibly due

to a near field standing wave pattern created by the incident field when combined with the

scattered field. This is one reasonable explanation for the oscillations that occur in many of the

data figures, such as Figures 3-2 and 3-11.
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Incident Wave

/

Figure 3-21. Example of forward scattering.

Note that the wave appears to pass through the

cylinder (and a null occurs).

Incid_t Wave

Reflection

Reflected Wave

Figure 3-22. Example of specular reflection

where wave appears to bounce off cylinder (a

peak occurs).
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Wltv¢

Figure 3-23. Example of the anomalous peak.

Forward scattering is present, but a peak

occurs. Suspected source is the discontinuity

in current for one linear component..
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4. Alternative Solution Techniques and Extensions of Present Solution

4.1 ]Vletht-z-Inf Mnment_ (Two-Dimensional Only)

A two-dimensional method of moments analysis has been performed for a cylinder with

radius comparable to the SSF module. The polarization of the electric field is linear (rather than

circular) in the code used. Figure 4-1 illustrates the geometry used. For frequency L_, the radius

is 13.133._ and for L 2 the radius is 10.23_. v For each case, the segment length used along the

cylinder has been chosen to be 0.097 wavelengths. The code for this solution has been written

and the theory is provided in Appendix 7.2.

The reason for investigating this simplified version of the fundamental scattering problem

is to study the current Js that is induced on the cylinder. The MoM provides an exact solution,

no assumptions or approximations have been made. This will verify the accuracy of the physical

optics (PO) approximation for a simpler problem and illustrate the PTD corrections to the

solution.

The integral equation used to solve this two dimensional problem is [15]:

_?_ilp "gt(o_)(J,Ip.-p 'l)d,,' . g,(p .)
c

(1)

where k is the wavenumber, 11 is the impedance of free space, C is the contour of the boundary

between the perfect conductor and free space (in this case, C is a circle), J, is the current density,

H0_ is the Hankel function of the second kind and order zero (and is also the free space Green's

function or propagator in two dimensions), p' is the location of the current, p,, is the location of

the observation point on C, and E, _is the incident electric field which must be perpendicular to

the paper. The unknown in (1) is the current density Jz- The current density is found by assuming

pulse functions over small, equally sized intervals with unknown heights. The heights are found

by solving the resulting matrix equation. For further information, see [15] and Appendix 7.2.

The case of I_I requires over 600 pulses and L 2 requires over 800 pulses. The current for

the ease of frequency L_ scattering off an infinite cylinder is shown in Figure 4-2, and the current

for frequency L 2 is shown in Figure 4-3. The dashed line for the current density is the PO

approximation for the current from 0 to 90 °. The magnitude of the current follows the PO

approximation value but deviates from the PO solution near and within the shadow region (defined

as 90 to 180 ° in angle). As expected, the results for 180 to 360 ° are exactly symmetric. The

phase is also very encouraging, since the phase varies linearly throughout the illuminated region.

The slight increase in the slope of the phase as the angle is increased from 0 to 90 ° is due to the

difference between the change in x and y along the circle.

The correction necessary to more precisely match the MoM solution is usually modeled
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asdiffractionfrom two points,eachat90and270°. Thesediffraction pointscould be accounted

for using the physical theory of diffraction (PTD). The effect of this current is to radiate creeping

waves that only influence the solution for observations near 180 °. See Appendix 7.3.

These results for the simpler problem are encouraging. It can be concluded that the radius

of the cylinder is large enough to permit use of PO as a good approximation to the true solution.

However, it should be noted that the ends of the cylinder may cause significant changes to the PO

solution. It is the ring at the top of the cylinder that would be the first (or dominant) term in the

PTD analysis.

4.2 Ganmatrie.al Optie._/Ganrnatrie.al Then_ nf Diffraelinn (GO/GTD)

Geometrical Optics (GO), also known as ray techniques [13,20] have a wide variety of

applications in engineering, including reflector design and laser cavity design. In GO, the rays

define the phase of the field, and the amplitude is found by following intensity variations along

each ray.

GO can be developed from Maxwell's equations using a high frequency approximation for

cases where the wavenumber k approaches infinity (equivalent to frequency approaching infinity).

Then, the Luneburg-Kline series [21] is used to expand the electric field; however, the terms in

the series are (ta) _ where _ = 2nf and n is an integer. An investigation of scattering from a wedge

reveals that terms such as n=-1/2 are in fact significant. This revelation has led to the

development of GTD. An excellent review of GTD for antenna analysis appears in [22].

The geometrical theory of diffraction, as first proposed by Keller [23] is a high frequency

approximation that augments geometrical optics by computing the contribution from diffraction

points. This theory breaks down (the electric field approaches infinity) as one computes the field

near shadow boundaries. An excellent discussion of GTD for edges appears in [11].

A typical example is the scattering from a wedge, as shown in Figure 4-4. The wedge

begins at the tip and is infinite in extent. The GO solution has an incident field in Regions I and

II. The GO solution has a reflected solution in Region I. Region III has no incident or reflected

field. The full GTD solution is the sum of the GO solution and contributions from diffraction

points. GTD considers the tip of the wedge as a diffraction point with two contributions: one

centered (in angle) along the incident shadow boundary (ISB), and one centered along the

reflection shadow boundary (RSB). These contributions exist in all regions except for Region IV.

As the angle of observation moves away from the shadow boundary, the diffracted fields become

small. The rate that the diffracted fields decay depends on the distance from the diffraction point

to the source and the observation.

The diffracted fields using Keller's diffraction coefficients also become singular at the

shadow boundaries. The uniform theory of diffraction (UTD) corrects this singularity by

recognizing the interaction between saddle points in the integration (this integration is the one
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which is presently performed directly by using the code in Appendix 7.1). The interaction is

included in Keller's original development through the use of a Fresnel transition function [24].

A second method of correcting for the singularity in Keller's original formulation is to return to

MaxweU's equations and compute an asymptotic expansion of the solution directly. This is known

as the uniform asymptotic theory of diffraction (UAT) [12] and results in a solution that also

begins with Keller's formulation. UAT is not as prevalent in the literature when compared to

UTD, but the solutions are very similar.

The UTD diffraction coefficients for a straight edge, a curved edge, and a smooth shadow

boundary (such as the curved edge of the cylinder between the illuminated region and the shadow

region) have been studied and codes developed for edges in order to evaluate the use of UTD in

the present problem. As an example, the bistatic scattering from a circular disk has been

computed and the results are shown in Figure 2-7 of Appendix 7.3.

The use of UTD for cases where both the source and observation are in the near field

generally require higher order terms in the analysis. While this has not yet been formally

investigated, the use of slope diffraction coefficients [25] is one possible method of formulating

higher order terms. The use of the slope diffraction coefficients is prevalent especially when the

first order diffraction coefficients are very small.

The second, and probably more rigorous choice is to find the higher order terms of the

steepest descent integration directly. Note that this is often mentioned in the literature, but rarely

accomplished due to the complexity of the problem.

The use of UTD can sometimes lead to caustic phenomena. A caustic occurs if there are

a large number of GO rays and/or diffraction rays that contribute to a single observation point.

For these cases, the singularity can be removed by converting the diffraction coefficients to an

equivalent current [26]. This has been denoted the equivalent current method, or ECM, in the

literature. More recently, the use of incremental length diffraction coefficients has become

necessary for three-dimensional problems [27].

UTD is also capable of computing the effect of multiple diffraction [28]. In cases where

a large number of closely spaced edges are present, and there is little specular reflection (as in low

radar cross section targets), the effect of diffraction fields incident on a second edge and

diffracting again can become significant. In the case of the SSF cylinder with solar panels, this

may become a significant contribution to the total scattered field.

The use of UTD is severely hindered, however, if both the source and observation

locations are far from the diffracting object. See, for example, Figure 1.5 of Appendix 7.3. That

is not to say that one must be in the near field. In fact, we have found that the GTD solution

breaks down. A GTD solution to the scattering from a two dimensional cylinder the size of the

SSF is shown in Figure 2-11 of Appendix 7.3 (due to symmetry, only half of the cylinder is

shown). Note that the solution should predominantly appear as a sin(x)/x function that is very
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narrow. The peak in Figure 2-11 of Appendix 7.3 is anomalous, and occurs in the forward

scattering direction. Backscatter is represented by the data at phi = 180 °. The moment method

solution to the scattering is shown in Figure 4-5. In the figure, backscatter is at 0 = 180 °. Note

also the slow rise to forward scattering at 0 =0 °. The absence of side lobe structure when

compared to our data is due to 1) MoM solves only a two-dimensional problem for 2) linear

polarization.

Therefore, it is concluded that UTD is not a very effective approach to the present

problem. It would be more applicable to problems such as radiation from an antenna mounted on

the solid rocket boosters or mounted on the space shuttle [22]. It should be pointed out that

techniques to determine the optimal location of the antenna on a satellite can incorporate GTD in

a very efficient fashion. The optimal choice may be parameterized as a location that results in a

strong gain in a desired set of directions and nulls far removed from other specified directions.

4.3 Phy._ieal Ontie._/Phv._ieal,, Theory.of Diffraetinn (PO/PTD). .

The use of GTD and/or PTD has been compared since the inception of each technique.

A set of reviews from the early 1970's discuss the advantages and disadvantages of each method

[29-31]. Again, in the 1980's, RCS (radar cross section) prediction generated a number of review

papers, where [32,33] are of particular interest.

The use of PTD solutions is nevertheless not as prevalent in the literature. First, the PO

solution is computed using the physical optics approximation to the current as is done in Section

2.1.3. From the approximation to the current, the vector magnetic potential A is found by

integrating over the current density, and the electric field E can be determined. The resulting E

is only the scattered field. Note that the current is the geometrical optics solution for the current

on the object. Thus, PO is indirectly derived from geometrical optics.

Once the PO solution has been obtained, the same (as in GTD) diffraction points are used

to determine the PTD correction to the solution. However, the solution is now cast in a PO form,

rather than a GO form. Hence, the diffractions are related, but are computed in a different

fashion. The shadow boundaries do still exist, but by using PO/PTD the singularities at these

boundaries are avoided. In other words, by computing the integral directly, the saddle points and

their interaction are determined directly to avoid these singularities.

This use of diffraction coefficients is also restricted to the far field of the scattering object.

The method of equivalent currents for edges in diffraction has been studied [19,34,35] where the

only remaining singularity is in the exact forward scattering direction, also known as the Ufimtsev

singularity.

Another characteristic of PO is the existence of a discontinuity in the current at the shadow

boundary on the object. This was seen in the data collected as an anomalous peak at forward

scattering. This can be corrected (in the far field) using the techniques discussed in [36]. There
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areother second order effects such as creeping waves, etc., that are thoroughly discussed in [37]

Usually, these second order effects are significant only if the first order (PO + PTD) is small.

The use of PO/PTD for near field investigations may also require higher order terms of

the PTD equivalent currents. This problem is inherent to both UTD and PTD due to the

simplification used, namely that the scattering is considered as a localized effect. The use of PTD

avoids caustics, unlike GTD. However, the theory presented in [19,34,35] accounts for both the

far field and the Fresnel field solution to the wedge problem shown in Figure 4-3.

The most obvious advantage to the authors of PTD over GTD is that neither the source or

the observation need be close to the diffracting object. In fact, for many studies of radar cross

section (RCS), PO/PTD is preferred for this very reason [37]. One major disadvantage of

PO/PTD is that multiple reflections have not been and would be difficult to incorporate into the

analysis. This is seen as important to the present problem, particularly when the solar panels are
added to the scatterer.
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Figure 4-1. Geometry for MoM analysis.
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method of moments for the frequency L I. The PO approximation to the magnitude is shown as
a dashed line.
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5. Conclusions

The scattering from a space station cylinder has been modeled using physical optics with

no assumptions except the form of the current induced on the surface of the cylinder. The

computations were performed over a typical remotely piloted CTV auto-rendezvous and capture

trajectory.

During most of this trajectory, the GPS system will be used to remotely pilot the CTV.

The trajectory traverses within the far field, enters the Fresnel region, then exits the Fresnel

region and enters the near field region. The Fresnel region is when the distance from SSF to CTV

is between 1.1 km to 40 meters. The near field begins roughly 40 meters from the space station

Freedom. Since the optical guidance system will take over sometime before there is 100 meters

between the CTV and SSF, the GPS system will be used only in the Fresnel and far field regions.

Data has been coUected using this simulation model for a span of possible geometries. The

geometry is defined by (1) the angle between the GPS satellite and the axis of the cylinder, and

the angles (referenced by the plane containing the GPS satellite and the SSF) from SSF to the

earth. The integrations are performed using an N-dimensional Romberg integration. Once the

scattered field is found, the RCP component in the direction of the CTV is determined and

normalized relative to the signal strength of the direct signal.

The data indicates that the path difference between the direct signal and the scattered signal

is less than 300 meters during the final stages of AR&C maneuvers, and during isolated sections

of the trajectory when the GPS satellite, CTV, and SSF are approximately collinear. The

scattered RCP signal rises slowly during the final stages of AR&C maneuvers to maximum values

of approximately + 2 dB or -4 dB for end-on approach and side approach, respectively. These

values are only for particular locations of the GPS satellite, and the data for other locations are

10 to 20 dB below this maximum.

During the earlier stages of AR&C maneuvers when the three objects are roughly collinear,

there are three scattering mechanisms: specular reflection (where the signal appears to "bounce"

off the SSF); forward scattering (where the signal appears to pass through or diffract around the

SSF); and a special case of forward scattering where an anomalous peak occurs. This peak is

denoted anomalous because it is due to the discontinuity of the approximation to the current.

Specular reflections can have peaks in the range of -20 dB to -30 dB. Forward scattering is

smaller with maximum values near -35 dB. The anomalous peak value is immaterial, but the

scattering near this value has a maximal value of -44 dB. In some cases, the GPS satellite, the

CTV, and SSF form a line for much of liae early AR&C maneuvers. For this case, the maximum

value is roughly -55 dB.

Alternative solutions have also been investigated. A method of moments solution for a

two-dimensional cylinder has been computed. The method of moments makes no approximations.

The results indicate that the physical optics current is a good approximation when compared to the
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exact numerical solution. However, only one linear polarization has been investigated, and it is

well known that the other linear polarization (to create RCP) has a strong discontinuity. This is

the source of the anomalous peak mentioned above.

The use of GTD and PTD has also been investigated. It has been found that GTD would

not be appropriate due to the large distances involved. For GTD to be accurate, one of the source

or the observation must be in the near field. The use of PTD is a natural extension to the work

accomplished in this report since PTD is a correction to the physical optics approximation.

However, the discontinuity in the current has only been corrected for far field observations. In

addition, once solar panels are added to the problem, the questions of shadowing and multiple

reflections have not been addressed in the literature.
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7. Appendices

7. ] Phy_ieM Optie._ Cowrie

The code consists of a main function and seven files, each of which contains one or more

functions. A header file, "cplxmath.h" is also necessary. The files used are:

JVE4MAIN.C:

HED-FT. C:

NDIMRI.C:

FCN-A. C:

RCP.C:

EREF.C:

PATH.C:

CPLXMATH. C:

Contains the main function, and controls execution of the program.

Prints a header banner to the output file.

Computes an N-dimensional integration of "fcnA".

Computes the integrand that is integrated.

Computes the RCP component of the scattered field.

Computes the reference field (direct signal from the GPS satellite).

Computes the location of the CTV in the trajectory.

A collection of functions used to create complex math routines that are

ANSI compatible.

The above code has been used on a Motorolla Delta Series 8000 Model 8640 Computer

System (with four 88000 RISC processor chips and 128 MBytes of RAM and is rated at 152

MIPS) and on a 486 IBM compatible machine with a 50 MHz clock and 8 MBytes of RAM.

The output file from the code above is named GPS5.OUT. A post processor to filter the

data has also been used on the machines mentioned above and is also given in the following code

listings. The code has only one file: JOVE-PP.C.

The output file GPS5.OUT contains columns of data. The first column is the data point

number in the trajectory. The second and third columns are the magnitude and phase

(respectively) of the relative multipath signal. The fourth column is the second column in dB.

The final column may contain 1 or 0 or -1, depending on the integration routine. A 1 denotes the

integration converged successfully, a 0 denotes the integration was not needed (only if either the

top or the curved side of the cylinder is not illuminated) and a -1 indicates that the integration has

not converged. Every integration that has been attempted in this project has converged. In fact,

one should be aware that the post processor is not presently capable of handling this situation and

it is not known what the post processor will do in this situation.
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/*

*'/

/*

JVE4MAIN. C

Version 5.0: Inclusion of Romberg integration...
After verification of code, will

be placed on apollo.

Version 5.0a: Apollo version of 5.0.

Version 4.0: Clean up of complete code,

This v_rsiqn also prints

0 for ]M/P] and path difference
for arg(M/P) if path difference is

greater than 300.

/*

Version 3:

*I

I*

Set up to user enter values of theta
and theta e (also on motorolla
in older version where Z varies

from -300 to 300). PC version

also includes path computations.

Version 2: includes the RCP

component calculation,

includes comparison of reference signal

and M/P signal

*/

/*

Test driver for Jove: GPS/M-P problem

*/

#include <stdio.h>

#include <time.h>

#include <math.h>

#include "/usr/users/richiej/bin/cplxmath/cplxmath.h"

#define TOL le-3

#define DX 10

#define LI 1.57542e9

#define L2 1.22760e9

/*frequency-1.57542e9; LI-1.57542 GHz, and L2-1.2276 GHz */

void print_banner(FILE *fp);
struct Complex matrix element(int n,int j, double tol);

struct Complex RCP(st?uct Complex ex,struct Complex ey, struct Complex ez) ;

struct Complex direct(double theta, double theta_e, double phi_e,
double lambda);

void path(int npath);

7-I 



int dx,key;

double gama,delta,L,radius,lambda,theta_e,phi_e;
double X,Y,Z;

main()

{
char gch;
int termstat-0;

int l,n,m,j,first,last,npath,n_end,nl,n2,n3,n4;
int kk[6]-{0,0,0,0,0,0};

double frequency,eps-8.854e-12,theta,temp,tol;

struct Complex zero,integral_value,constant,const1,E[5] [3],totalE[3];

struct Complex rcp_comp,Eref;

FILE *out;

time t t;
m

if ((out - fopen("gps5.out", "wt"))
-- NULL)

{
fprintf(stderr, "Cannot open output file.ln") ;

return I ;

}

zero.real-0;

zero.imag-0;

tol-TOL;

dx-DX;

/*

Set up operating frequency
*/
printf("Enter 'I' for LI, and '2' for L2:

scanf ("%d",&l);

frequency-L1;

if (1--2)

frequency-L2;

/*

Set up incident angle
*/
theta--90 ;

while( (theta<0) I (theta>90) )

{
printf("Enter value of theta (0->90):

scanf ("%if",&theta) ;

}

gama-sin (theta*PI/180. ) ;

delta-cos (theta*PI/180. ) ;

/*

Set up angle of object w. r. t.

earth, by defining theta_e, phi_e
*/
printf("Enter value of theta e: ");

scanf ("%If",&theta_e);

printf("Enter value of phi_e: ");

scanf ("%if",&phi_e);

") ;

") ,



/*

Set up object size
*/
L-9.;

radius-2.5;

(cylinder)

/*

Set operating wavelength
*/
lambda-3.e8/frequency;

/*

Initialize constants for integral

*/
constant.imag--4*PI*2*PI*frequency*eps;
constant.imag-1./constant.imag;

constant.imag*-(2./377.);

constant.real-0;

temp-PI*delta*L/lambda;

constl.real-cos(temp);

constl.imag-sin(temp);

/* ++++++++++++++++++++++++++++++++++++++++++++++++++++

in E[5] [3],

the first index is the geometry number:

0: top of cylinder

I : side of cylinder
etc.

the second index is the component:
0: x

I: y
2: z

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

*/

/* print header information */

print_banner (out) ;

time (&t) ;

fprintf(out,"Date/Time of run: %s\n\n\n",ctime (&t)) ;

fprintf(out,"Frequency is %lf GHz\nTheta - %le\ntheta_e - %leknphi_e -

%le\nTolerance-%le\nPath step-%d\nkn",

frequency/le9,theta,theta_e,phi e,tol,dx);

/* Set up path information
n end-(37000+1700+200+100)/dx;

n-end-n end+2000*PI/(2*dx);

*/

n1-37000/dx; n2-n1+2000*PI/(2*dx) ; n3-n2+1700/dx; n4-n3+200/dx;

/* Print path information */

fprintf(out,"Total points in path is %d\n",n_end) ;

fprintf(out,"line I: %d, circle I: %d, ellipse I:
%dknkn",nl ,n2,n3, n4) ;

/*fprintf(out,"Hit any key to begin calculations\n");

getch () ;

%d, ellipse 2:

clrscr();

printf("Hit s to stop process\n");

*/



fprintf(out," n IM/PI arg(M/P) IM/PIdB key\n");

for(npath-1;npath<n_end;npath++)
{

/* Set up Termination key as 's'

if(kbhit())

{
gch-getch();

if(gch--'s')
{
termstat-1;

break;

}
}*/

/*

path(npath); /* Sets up X, Y, Z of CTV via path position */

For debugging information, X,Y,Z can be specified here

X-0;Y-0;Z--90; */

fprintf(out," %d ",npath);

/* Check M/P path difference. If Eref.real - -9999, then M/P path
difference > 300, and Eref.imag is

M/P path difference */

Eref-direct(theta,theta e,phi_e,lambda);

/*printf("%if, %if\n",Eref.re_l,Eref.imag); */

if(Eref.real>-9990)

{ /*
totalE[0]-zero;

totalE[1]-zero;

totalE[2]-zero;

implies path diff < 300 */

/* n-0 is top of cylinder, n-1 is side of cyl. */

first-0;

last -2;

if(theta--90)/* only integrate over side of cylinder */

first-l;

if(theta-- 0)/* only integrate over top of cylinder */

last-l;

for(n-first;n<last;n++)

for(j-0;j<3;j++)
{I*--

/* Major computations to determine
scattered field at X, Y, Z of ctv */

kk[n*3+j]-0;

integral_value-matrix_element(n,j,tol);

kk[n*3+J]-key;

E[n] [j]-Multiply(integral_value,constant);

*/

if (n--0)

E [n] [j ]-Multiply (E [n] [j ] ,constl ) ;

totalE [j ] -Add (totalE [j ] ,E [n] [j ] ) ;

}/*--- */



/* NOW, compute the RCP component of totalE[j]

rcp_comp-RCP (totalE [0] ,totalE [I ] ,totalE [2] ) ;

/* Compare Eref and M/P signals */

Eref-Divide(rcp_comp,Eref);

/* print results

fprint f (out, "
atan2 (Eref.imag ,Eref.real

10*logl 0 (Magnitude (Eref)) ) ;

for (j-0;j<6;j++)
{
fprintf (out, "%d", kk [j ] ) ;
}

fprintf (out, "\n") ;

}

%le %le %le ",Magnitude(Eref),
)*180./PI,

/*

if(Eref.real<-9990)

{
key--99;

fprintf(out," 0.000 %le

Eref.imag,Eref.real,key);

getch(); */

}

%le %dkn",

time (&t) ;

if (termstat--0)

fprintf (out, "\n\nNormal Termination\n\n") ;
if (termstat--1)

fprintf(out,"\n\n * * * User Terminated * * *\nkn\n") ;

fprintf(out,"Date/Time of end of run: %skn",ctime (&t)) ;

fclose (out) ;

return 0;

}

*/

*/



/*

PATH. C

Code to parameterize the CTV path and to

check if path difference is greater than
300 meters...

*/

#include <stdio.h>

#include <math.h>

#define PI 3.141592654

extern int dx;

extern double X,Y,Z,theta_e,phi_e;

void path(int n)
{
int nt,nl,nc,nel,ne2,r;

double phi,dphi,tl,dtr,nux,nuy,nuz,eyax,eyay,eyaz,mag,xr,yr,zr;

double xa,ya;

dtr-PI/180.;

rR2000;

xa-37000;

yaE2000;

nl-37000/dx;

nc-nl+(r*PI)/(2*dx);

ne1-nc+1700/dx;

ne2-ne1+200/dx;

if( n <- nl )

{
xa-xa- (float) n*dx;

}
if( ( n > nl) && (n <- nc ) )

{
phi-PI/2;

dphi- (n-nl) * (float )dx/( float )r ;

phi-phi+dphi;

if (n--nc)

phi-PI;

xa- (float) r'cos (phi) ;

ya- (float) r'sin (phi) ;

}

if( ( n > nc) && (n <- nel) )

{
xa--r+ (n-nc) *dx;

t1-xa+1150.;

tl-t1*tl;

t1-t1/(850.*850.);

ya-sqrt(1-t1)*425.;
}

if( ( n > nel) && (n <- ne2) )



if( (

{
xa--3OO.+(n-nel)*dx;

tl-xa+200.;

tl-t1*tl;

t1-t1/(100.*100.);

ya-sqrt(1-tl)*50.;
}

n > ne2) )

{
ya-O;
xa--100;

xa-xa+(float) (n-ne2)*(float)dx;
}

phi-phi_e*dtr;

if (theta_e>100)
{
X-xa*sin (phi) ;

Y-xa*cos (phi) ;

Z --ya;
}

if (theta e<100)

{
X-ya*sin (phi) ;

Yxya*cos (phi) ;

Z R-xa ;
}

return;
}



EREF.C

/*

Computes the reference field

real and imaginary parts...

*/
/*#include <stdio.h>
#include <conio.h>*/

#include <math.h>

#include "/usr/users/richiej/bin/cplxmath/cplxmath.h"

extern double X,Y,Z;

struct Complex direct(double theta, double theta_e, double
double lambda)

{
double xg-0,yg,zg,re-6.370949e6,rge,rg,rgc,rc,gps,omv,rd;

double dtr,a,b,c,mag,phase,xp,yp,zp,rp,dt;

struct Complex Edir;

gps-22240.*1000.;
omv-331.'1000.;

rge-re+gps;

dtr-PI/180.;

theta e*-dtr;

phi_e_-dtr;
/*theta*-dtr; */

phi_e,

rp-re+omv ;

/*xp-rp*sin (theta_e) *cos (phi_e) ;

yp-rp*sin (theta_e) *sin (phi_e) ;

zp-rp*cos (theta_e) ;

if(theta_e--90) zp=0.;

./

c-rp*rp-rge*rge;

if((theta) !-90)

{

a-1./(cos(theta*dtr)*cos(theta*dtr));

b=2.*yp*tan(theta*dtr)-2.*zp;

else

dt-sqrt(b*b-4*a*c);

zg--b+dt;

zg/-(2.*a);

if(zg<0)
{
zg--b-dt;

zg/-(2.*a);
}

yg--zg*tan(theta*dtr);

}

{
zg-0;

/*

a-1 .;

b--2.*yp;
is the same as above */



dt-sqrt (b*b-4*a*c) ;

yg--b+dt ;

yg/- (2.*a) ;

if (yg>0)
{
yg--b-dt ;

yg/- (2.*a) ;
)

}

rg-sqrt (xg*xg+yg*yg+zg*zg) ;

rgc-sqrt ((xg-X) * (xg-X) + (yg-Y) * (yg-Y) + (zg-Z) * (zg-Z)) ;

phase- (2. *PI )/lambda ;

phase*- (rg-rgc) ;

mag-rg/rgc ;

Edir. real-mag*cos (phase) ;

Edir. imag-mag*sin (phase) ;

rc-sqrt(X*X+Y*Y+Z*Z);

rd-rg+rc-rgc;

/*printf ("\n (rg-%if) + (rc-%if) - (rgc-%lf)- (rd-%If) \n", rg, rc, rgc, rd) ;*/

if(rd>300)

{
Edir.real--9999.;

Edir.imag-rd;
)

/*printf("zg-%le, yg-%lekn",zg,yg);

getch(); */

return Edir;



NDIMRI. C

/*

integrator

*/

/*#include <stdio.h>

#include <conio.h> */

#include <math.h>

#include "/usr/users/richiej/bin/cplxmath/cplxmath.h"

/* N is #dimensions */

#define N 2

extern int key;

extern double delta,gama,L,radius,lambda;

struct Complex fcnA(int n, int j, double xl, double x2);

struct Complex matrix_element (int n, int jj, double tol)
{
int i,k[16],kt,m,mm,l,ll,nn[10] ;

int nn9,i9,nn8,i8,nn7,i7,nn6,i6,nn5,i5,nn4,i4,nn3,i3,nn2,i2,nnl,il ;

double a[N+1] ,b[N+1],h[N+1],al,e,p[10],d[10] ,cc[10],en;

double ee,g[10],x[10] ;

struct Complex zero,v[15],aa[15],u,aint,t1,t2;

zero.real-0;

zero.imag-0;

/* Define upper
if (n--0)

{
a[1]-0.;
b [I ]-radius ;

a[2]-0;

b[2] -2.*PI;
}

if (n--1)
{
a[1]--L/2.;

b[1]- L/2.;

a [2] --PI;

b[2]- 0;

}

and lower limits of integration */

k[I]-I;

k[2]-2;

key-0;

m-11;

ai-1.5;

if(

/*

_N<I_I I oN>9111(m<l)I I (al<l .s_ll (al>2)
{
printf("bomb at 1\n");

getch(); */

key--9;

return zero;

}



h [I ]-0.02;

h[2] -0.02;

for(i-1 ;i<-N;i++)

{
if((h[i]<-0) I I (h[i]>-1))

{
/* printf("bomb at 2\n") ;

getch () ;

key--9 ;

return zero;

}
d[i]-a [i] ;

}
ee-tol ;

mm-m ;

for (i-N; i<-8 ;i++)

{
p[i+1 ]-0;

nn[i+1]-l;

d[i+l ]-0;

}
1-I;

for (i-I ;i<-N; i++)

cc[i]-b[i]-d[i] ;

*/

repeat:

u-zero;

/*kt-0; */

for (i-I ;i<-N;i++)
{
g[i]-h[i]/k[l] ;

nn[i]-1 ./g[i]+0.5;

p[i]-cc[i]*g[i] ;

}
nn9-nn [9 ] ;

for(J9-1 ;i9<-nn9;i9++)

{
x [9] -d[9] +p [9] * (i9-0.5) ;

nn8-nn [8] ;

for (i8-I ;i8<-nn8 ;i8++)

{
x [8] -d [8] +p [8] * (i8-0.5) ;

nn7-nn [7 ] ;

for (i7-I ;i7<-nn7 ;i7++)

{
x [7] -d[7] +p [7] * (i7-0.5) ;
nn6-nn [6 ] ;

for (i6-I ;i6<-nn6 ;i6++)

{
x[6]-d[6]+p[6]*(i6-0.5) ;
nn5-nn [5 ] ;

for(i5-1;i5<-nn5;i5++)

{
x [5]-d[5] +p [5] * (i5-0.5) ;

nn4-nn [4] ;

for(i4-1;i4<-nn4;i4++)

{
x [4] -d[4] +p [4] * (i4-0.5) ;
nn3-nn [3 ] ;



/*

/*

for(i3-1;i3<-nn3;i3++)

{
x [3]-d[3] +p [3] * (i3-0.5) ;

nn2=nn[2] ;

printf("nn2=%d, ",nn2); */

for(i2-1;i2<-nn2;i2++)

{
x[2]=d[2]+p[2]*(i2-0.5) ;

nnl-nn[1] ;

if(i2--1) printf("nn1-%d\n",nnl) ;

for (ii -I ;ii <-nnl ;ii ++)

{
x[1]-d[1]+p[1]* (ii-0.5) ;

*/

u-Add(u,fcnA(n,jj,x[1],x[2])) ;

}}}}}}}}}
/*printf (" .") ;*/
for(i-1;i<-N;i++)

/* u-u*p [i] ; */
{
u.real*-p [i] ;

u. imag*-p [i ] ;

}
v[l] -u;
/*printf ("u-%le\n",u) ; */
if((1-I)<-0)

{
aa[1]-v[1] ;

i++;

goto repeat ;
}

if( (1-I)>0)

{
en-k [i] ;

for (11-2 ;ii<-i; ii++)

{
i-i+I -ii;

/* v[i]-v[i+1]+(v[i+1]-v[i])/((en/k[i])*(en/k[i])-1 .) ;

tl.real-( (en*en)/(k[i]*k[i]) -I.) ;

tl .imag-0. ;

t2-Subtract (v [i÷I ] ,v[i] ) ;
t1-Divide (t2, tl ) ;

v[i] -Add (v [i+I ] , tl ) ;

}

aint-v[1];

key-l;
/*if(fabs(aint-aa[l-1])<fabs(aint*ee)

tl.real-aint.real*ee;

tl.imag-aint.imag*ee;

if (Magnitude (Subtract (aint, aa [1-I ] ) )< (Magnitude (tl) ) )

{
/* printf("at 3, answer is %le\n",aint);

getch () ; */

return aint;

}
key-- 1 ;

if (l--mm)

*/

*/



{
/* printf ('°at 4,

getch () ;
return aint;

)
aa [i] -aint ;

1-1+I ;

k[l]-al*k[1-1] ;

goto repeat ;

answer is %le\n",aint) ;

*/



FCN A.C

/W

*W*WW***WWWWWW*****WW*W*W

This defines 2-D function

to be integrated

*/

#include <math.h>

#include "/usr/users/richiej/bin/cplxmath/cplxmath.h"
/*#include <stdio.h>

#include <conio.h> */

/* Prototype functions */

extern double delta,gama,L,radius,lambda;

extern double X,Y,Z;

struct Complex fcnA(int n, int j, double xr, double yp)
{
double k,t_m,r_m,r_p,x_m,y m,x_p,y_p,f2,mag,beta,thickness,dtr;

double x,y,z,greend,R,R2,R3,R4;

struct Complex fcn value,green,jcur,ejx,ejy,ejz,xil,xi2;
struct Complex t1,_2,t3,zero;

zero.real-0; zero.imag=0;

k=2*PI/lambda;

/* NOTE: The metric for r(dphi) is in jcur!

(xr if n-0, and radius if n=1 */

if(n==0)/* integral over top of cylinder

in this case, xr is radius, and yp

is the angle in radians
{
x-xr*cos (yp) ;

y=xr*sin (yp) ;

z=L/2. ;

*/

ejx.real=0;

ejx.imag--delta;
ejy.real-1.;

ejy.imag-0;

ejz=zero;

jcur.real= cos(k*gama*y)*xr;

jcur.imag--sin(k*gama*y)*xr;
}

if(n==1) /* integral over side of cylinder,

in this case, xr is z, and yp is

phi angle in radians
{
x-radius*cos(yp);

y=radius*sin(yp);

z-xr;

*/

ejx.reali0;

ejx.imag-gama*y/radius;

ejy.real=0;

ejy.imag=-gama*x/radius;

ejz.real--y/radius;

e3z.imag-delta*x/radius;



jcur.real- cos(k*(gama*y-delta*z))*radius;
jcur.imag--sin(k*(gama*y-delta*z))*radius;

greend-sqrt((X-x)*(X-x)+(Y-y)*(Y-y)+(Z-z)*(Z-z));
green.real- cos(k*greend)/greend;
green.imag--sin(k*greend)/greend;

R-greend; R2-R*R;R3-R2*R;R4-R3*R;

xil.real-k*k/R2-3./R4;
xil.imag--3.*k/R3;

xi2.real-2./R2;
xi2.imag-2*k/R;

if(j--0) /* x component */
{

tl.real-((Y-y)*(Y-y)+(Z-z)*(Z-z));

tl.imag-0.;

t1-Multiply(tl,xil);

t2-xi2;

/* t1-Add(tl,t2) */

tl.real+-t2.real;

tl.imag+-t2.imag;

tl -Multiply (tl ,ejx) ;

t2.real-(X-x)*(Y-y);

t2.imag-0;

t2-Multiply(t2,ejy);

t2-Multiply(t2,xil);

t3.real- (X-x) * (Z-z) ;

t 3. imag- 0 ;

t3-Multiply (t3, xil ) ;

t3-Multiply (t3,ej z) ;

/* t1-Subtract (tl, t2) ;

t1-Subtract(tl,t3) ; */

tl.real--(t2.real+t3

tl.imag--(t2.imag+t3
}

.real);

.imag);

if(j--l) /* y component

{
tl.real-(X-x)*(Y-y);

tl.imag-0;

t1-Multiply(tl,xil);

t1-Multiply(tl,ejx);

*/

/*

t2.real-(X-x)*(X-x)+(Z-z)*(Z-z);

t2.imag-0;

t2-Multiply(t2,xil);
t2-Add(t2,xi2); */

t2.real+-xi2.real;

t2.imag+-xi2.imag;



t2-Multiply (t2, ejy) ;

t3.realx(Y-y)*(Z-z);
t3.imagz0;
t3-Multiply(t3,xil);
t3-Multiply(t3,ejz);

/* tl-Subtract(t2,tl);

t1-Subtract(tl,t3);

tl.real-t2.real-tl.real;

tl.imag-t2.imag-tl.imag;
tl.real-tl.real-t3.real;

tl.imag-tl.imag-t3.imag;

./

}
if (j--2) /* Z component

{
tl .real- (X-x) * (Z-z) ;

t I .imag-0 ;

t1-Multiply(tl,xil) ;

tl -Multiply (tl, ej x) ;

./

t2.real-(Y-y)*(Z-z);

t2.imag-0;

t2-Multiply(t2,xil);

t2-Multiply(t2,ejy);

/*

t3.real-(X-x)*(X-x)+(Y-y)*(Y-y);

t3.imag-0;

t3-Multiply(t3,xil);
t3-Add(t3,xi2); */

t3.real+-xi2.real;

t3.imag+-xi2.imag;

t3-Multiply (t3, ej z) ;

/* t1-Add(tl,t2);
tl.real+-t2.real;

tl.imag+-t2.imag;

./

/* t1-Subtract(t3,tl);

tl.real-t3.real-tl.real;

tl.imag-t3.imag-tl.imag;

,/

t1-Multiply(tl,green);

fcn_value-Multiply (tl ,jcur) ;

return fcn value;
m

}



/*

RCP. C

Function that computes RCP component of E x, E_y, E z
given x,y,z of observation point (global _ariables)--

if

*/

/*#include <stdio.h>

#include <conio.h> */

#include <math.h>

#include "/usr/users/richiej/bin/cplxmath/cplxmath.h"

/*extern double gamma,delta,L,radius,lambda; */

extern double X,Y,Z;

struct Complex RCP(struct Complex ex,struct Complex ey, struct
{

double theta,phi,r,gamma2,alpha2,xx,yy;

struct Complex er,et,ep,sphi,cphi,stht,ctht,el,e2,e3,zero;

struct Complex rcpterm;
zero.real-0;

zero.imag-0;

sphi.imag-0;

cphi.imag-0;

stht.imag-0;

ctht.imag-0;

r-sqrt(X*X+Y*Y+Z*Z) ;

theta-acos(Z/r);

if((Y--0)&&(X--0))

phi-0;
else

phi-atan2(Y,X);

sphi.real-sin (phi) ;

cphi .real-cos (phi) ;

stht. real-sin (theta) ;

ctht.real-cos (theta) ;

/* Computation of E r */

e1-Multiply(ex,stht);

e1-Multiply(el,cphi);

e2-Multiply(ey,stht);

e2-Multiply(e2,sphi);

e3-Multiply (ez,ctht) ;

er-Add (el ,e2) ;

er-Add (er, e3) ;

/* Computation of E theta
B

*/

e1-Multiply(ex,ctht);

el-Multiply(el,cphi);

e2-Multiply (ey, ctht) ;

e2-Multiply (e2, sphi) ;

Complex ez)



e3-Multiply(ez,stht);

et-Add(el,e2);
et-Subtract(et,e3);

/* Computation of E_phi

el-Multiply(ex,sphi);

e2-Multiply(ey,cphi);

e3-zero;

ep-Subtract(e2,el);

/*printf("\nR %le %le

printf( "I %le

/* Now, compute

./

%lekn",er.real, et.real, ep.real);

%le %le\n",er.imag, et.imag, ep.imag);

RCP term of given field */

yy--ep.real+et.imag;

xx- ep.imag+et.real;

gamma2-atan2(yy,xx);

if( (fabs(xx) )<0.I)

alpha2- (+ep. imag+et, real )/ (2. *cos (gamma2) ) ;
if( (fabs(xx) )>0.I)

alpha2- (-ep.real+et.imag) / (2.*sin (gamma2)) ;

rcpterm.real-alpha2*cos(gamma2);

rcpterm.imag-alpha2*sin(gamma2);

return rcpterm;

}

*/



HED-FT. C

/*

Prints program banner

to output file

*/

#include <stdio.h>

void print_banner (FILE *fp)
{
fprintf (fp, "\n\n

fprintf (fp, "\n\n
fprintf (fp, "\nkn

fprint f (fp,
"\nkn\n

fprint f (fp, "\n\n

fprint f (fp, "\nkn

fprintf (fp, "\nknkn") ;

}

******************************************

PO Solution to Auto-Rendezvous and ");

capture of OMV by SSF ");

by" ) ;
J. Richie and F. Forest");

******************************************



CPLXMATH. H

#ifndef CPLXMATH H
m

#define CPLXMATH H

/* Pi *I

#define PI 3.1415927

/* Complex number

struct Complex
{
double real,

imag;

};

in Cartesian form */

/* Real part of Complex number */

/* Imaginary part of Complex number */

struct

struct

struct

double

struct

/* Function prototypes */

*****************************************************************************

struct Complex Divide(struct Complex num cart,

struct Complex denom_cart);

/* Added by J. Richie, January, 1993 */

Complex Multiply(struct Complex numl,

struct Complex num2);

Complex Add(struct Complex addl,

struct Complex add2);

Complex Subtract(struct Complex subp,

struct Complex subm);

Magnitude(struct Complex z);

Complex Conjugate(struct Complex z);

#endif



CPLXMATH.C

/*#include <stdio.h>

#include <conio.h>*/

#include <math.h>

#include "cplxmath.h"

/* */
/* Jeff Swart October, 1992 Turbo C++ 3.0 */

/* */

/* Basic Complex math functions. Prototypes are located in CPLXMATH.H. *
/* .

/* 'RadToDeg' will convert a value given in radians as a double to the */

/* equivalent value in degrees, and return the result as a double. */

*****************************************************************************

/* 'DivComplexCart' will divide two Complex numbers given in Cartesian */

/* RENAMED TO Divide: J. richie, 2/93 */

/* form as structures of type 'cart Complex', and return the result in */

/* Cartesian form as a structure of-type 'cart Complex'. */
*****************************************************************************

struct Complex /* Polar form of numerator */

/* Polar form of denominator */

result ; /* Polar form of result */

double mag_1,mag_2,angle_1,angle_2;

/* Code ,/

/* Convert numerator and denominator to polar form */

mag_1-Magnitude(num);

mag_2-Magnitude(denom);

angle_1-atan2(num.imag,num.real);

angle_2-atan2(denom.imag,denom.real);

/* Calculate polar form of result

mag_1-mag I/mag_2;

angle_l-angle_l-angle_2;

result.real-mag_1*cos(angle_1);

result.imag-mag_1*sin(angle_1);

*/

/* Return Cartesian form of result */



return result;

} /* End function 'Divide'

/*

ADDED BY J. RICHIE, JANUARY 1993

Function to obtain product of two Complex numbers

struct Complex Multiply(struct Complex numl,

struct Complex num2)
{
/* Variable declarations */

struct Complex result;

/* Code */

result.real-numl.real*num2.real-numl.imag*num2.imag;

result.imag-numl.real*num2.imag+numl.imag*num2.real;

return result;

}

/* Function to obtain sum of two Complex numbers

struct Complex Add(struct Complex addl,

struct Complex add2)
{
/* Variable declarations */

struct Complex result;

/* Code */

result.real-addl.real+add2.real;

result.imag-addl.imag+add2.imag;

return result;

}

/* Function to obtain difference of two Complex numbers

struct Complex Subtract(struct Complex subp,

struct Complex subm)
{
/* Variable declarations */

struct Complex result;

/* Code */

result.real-subp.real-subm.real;

result.imag-subp.imag-subm.imag;

return result;

}

/* Function to return the magnitude of a Complex number

double Magnitude(struct Complex z)

*/

*/

*/

*/

*/



{

double mag_value;

mag value-sqrt( (z.real*z.real) + (z.imag*z.imag) );

return mag_value;
}

/* Function to return the Complex conjugate of a Complex number */

struct Complex Conjugate(struct Complex z)
{
struct Complex conjug;

conjug.real-z.real;

conjug.imag-(-1)*z.imag;

return conjug;
}



JOVE-PP.C

/*

Program to convert tag files
to n column format

*/

#include <stdio.h>

#include <conio.h>

#include <string.h>

int main()

{
FILE *in,*out;

char file in[13],file out[13],buffer[80],test[5],end_str[5];
int count_,n,countlma_,count2max,i,j;

long int key;
double xl,x2,x3;

clrscr();

/*

*/
Get file names

printf("enter input file name: ");

scanf("%s",file_in);

printf("enter output file name: ");

scanf("%s",file_out);

/*

*/
Open input file

if ((in - fopen(file_in, "rt"))
-- NULL)

{
fprintf(stderr, "Cannot open input file.\n") ;
return I ;

}

/*

*/
Open output file

if ((out - fopen(file_out, "wt"))
-- NULL)

{
fprintf(stderr, "Cannot open output file.ln") ;
return I ;

}

/*printf("files successfully opened\n");

/*

*/
Set up test strings

*/

strcpy(test," n ");

strcpy (end_str, "Dat") ;



/*

*/

Read input file until

first sighting of " n "

do

{
fgets(buffer,85,in);

/* printf("%s",buffer);

getch(); */

}while((strncmp(buffer,test,3)));

fprintf(out,"%s",buffer);
/*

*/

Initialize counters to count

amount of data read

count1-0;

/*

*/

Read in data and write to output
file

while ( !feof (in))

{
fgets (buffer, 85, in) ;

if(!strncmp(buffer,end_str,3))
break;

/* if "Dat" is seen,

if(strncmp(buffer,test,3) ) /* test for data or next set
{

sscanf(buffer," %d %ig %ig %ig %id",

&n,&x1,&x2,&x3,&key);

/* getch(); */

if (key!--99)

{
fprint f (out, "%d %le

n,xl,x2,x3,key);
count1++;

/* if(!(count1%10))

%le %le %id\n",

getch(); */
}

}
/* getch(); */

}
countlmax-countl;

printf("finished reading data resulting in %d pointskn",
countlmax);

Close all files

fclose(in) ;

fclose(out);

/*

*/
Final Clean up

end reading*/

*/

-? -\,7£



printf("Data management finished, hit any key to continue");

getch();

return O;

}



7.2 MoM Coda and Rar_rt

The following is a technical report from the Marquette University Electromagnetic

Simulations Laboratory that discusses the theory and code used in the two-dimensional moment

method analysis.
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Two-Dimensional

Method of Moments

TM z Case

Technical Report 7
Dr. Richie

March 24, 1993

I. Introduction

This report is a discussion of the method of moments for TM z two dimensional problems.

The code given is written for the solution of a metallic cylinder, but can be modified for any

cross section. The second section provides a brief summary of the solution techniques, and the

third section lists the output files. The appendix is a listing of the code.

2. Solution Technique

The integral equation to be solved is a two-dimensional EFIE, as given in [1]:

/3q4 l J_ (00 H_ 2) (/310.-o' I)ac'=E/(O.)
(1)

where 0m is the observation point (on the surface of the object), and 0' is the integration variable

over the contour C of the object. To avoid the singularity in H0(2), a thickness of 10 .6 has been

incorporated. See figure 1. The solution is fotmd by writing J as:

N-I

J_ (0') = _ _zg, (0') (2)
n-O

where

g,, (O/) = 1 O. < 0' _< 0,,.,
(3)

and is zero otherwise, where

0. * - 360 x n (4)
N

To solve, we substitute J, into eqn. (1):



T.R. #7

f_,7_ I [#(e')]H_='('<_le"(e")-e'(e') I)#(e')de'=Ej[e,.(e,.)] (5)"T, a, g,

where the explicit dependence on angle has been indicated, and

0, o _ (n +0.5) x 360 ° (6)
N

the factor of 0.5 places the observation points at the center of the basis function segments.

Note that we are solving a matrix equation where each value of m gives us an equation

of the form in eqn. (5) We have N unknowns in the sum for each equation. In other words, we

have:

Ax =b (7)

where:

Ol.!

A,,,. = I H_z' (/3 1_',.-_" I )_,'aO'

(8)

(9)

and

E ib. = , (O.) =_a" x =O'cos(O.).

for a plane wave incident on the x axis, as shown in figure 1.

dependent on the value of p,., and the shape of the object.

computations.

(I0)

The value of x in eqn.(9) is

The factor, flrl/4 is ignored in the

The code first calculates the entries of A, x, and b, and then "inverts" the matrix by

replacing A with the LU decomposition of A. Then, the solution is found using forward and

backward substitution. The solution is then checked by evaluating both sides of eqn. (6) and

computing the mean squared error.

2



[1]:

T.R. #7

Once the soluion has been checked, the far field scattered radiation is calculated using

Ho (/31o.- o'I ) = e -/_e. _¢co_ (¢. -¥)
(11)

Hence, the scattered field is given by the integration:

E: ( _,) =K l J" (O') e/##°'()'-¢) dc/ (12)

Substituting the approximate solution for the induced surface current into eqn. (11), we have:

n

(13)

The value of K is ignored since the far field pattern is normalized by the program.

3. Output Files

DATA.OUT: Summary of

MAT.2D:

EX.2D:

L U.2D:

CUR.2D

all computations,

completed.

Listing of all matrix elements

Listing of the b vector

including the

Listing of the matrix in L-U decomp form

Listing of the x vector (solution)

date/time each task is

A program, rp.c, does exist that will read in the data.out file and write a file that is only

the far field data. This can then be used in Tell-A-Graf for visual graphics display.



T.R. #7

i
E

<_
X

Figure I. Geometry ofproblem tobe solved.Note thethicknessisshown in0m, thedirectionof theincidentE, and

theradiusisindicated(enteredintotheprogram inwavelengths).
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T.R. #7

The project is named 2DTMZ.PR.I. This is the file that should be loaded into the

Borland IDE (the editor). The files in the project are listed below:

TMZ MN.C

INTEGRAT. C

FCN.C

R.C

B T FCN.C

H 0.C

EXCIT.C

L U.C

PATTERN. C

CPLXMATH.H

CPLXMATH. C

HED FT.C

Main program file.

Does Simpson's Rule integration

Function that is integrated

Radius function (here is circle)

Holds the basis and testing (not used) functions

Computes the values of J0 and Y0 using a

approximation (see Abromowitz and Stegan)

Computes the b vector

Finds LU decomp and has solver and solution check

Sets up Far Field Integration and Summation

Header file for the complex mathematics stuff...

Holds complex math functions

Prints banner to output file

polynomial

5



APPENDIX I

T.R. #7

CODE LISTING: 2d_tmz.prj

TMZ_NM.C

#include < stdio.h >

#include < conio.h >

#include < alloc.h >

#include < conio.h >

#include < math.h >

#include < time.h >

#include "cplxmath.h"

/* prototype functions

struct Complex matrix_element(int n. int m,int flag):

void excitation(void):

void L_U_Decomposition (void):

void Solve (void):

void Solution_Check(void);

void print_banner(FILE *fp);

double pattem(int phi,hat flag):

/* Declare external variables

hat N;

double radius:

double huge *s:

struc_ Complex huge *a, *b, *x;/* These are for the matrix and vectors

where Ax = b

FILE *data_out;

time t t;

main0/* --BEGINNING OF MAIN

{

int n.m,nl .ml .integral_flag.phi:

*/

6
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*/

*/



doublebeta.eta.epsilon.mu,factor;
double if max;

struct Complex det;

FILE *fpout;

clrscrO:

prinff("Enter the radius parameter: ");

scanf(" %lf".&radius);

l* First, set up a do loop to get the value of N and insure

that enough memory is available, and allocate the

memoFy
*/

prinff('Enter the size of the matrix: ");

scanf('%d'.&N);

if((a = farcalloc((long) (N*N),sizeof (su'uct Complex))) = = NULL)

{

prinff("Out of memory in pointer initial_afion_"):

exit(l):

}

if((b = malloc((long)N*sizeof(struct Complex))) = = NULL)

{

prinff("Out of memory in pointer b_q");

exit(l):

}

if((x =malloc((long)N*2*sizeof(struct Complex))) = = NULL)

{

prinff("Out of memory in pointer x_n");

exit(l);

}

printf('_a');

I* Set up output file for miscellaneous data stuff

if((data out= fopen('data.out','wt')) = = NULL) {

puts('cannot initialize data out file\n");

exit(D;

}

print..banner(data_out):

*!

fprinff(data_out,'_nN is %d \nradius is %fm',N,radius);

time(&0:

fprinff(dataout ," _D ate/Time run: %s_',ctime(&t));

T.R. #7



fclose (data_out);

/* Fill the matrix A using integrate function

beta= 3.141592654*2;

epsilon = 8.854e-12;

mu = 4.3.1415926.54" le-7;

eta = sqrt(mu/epsilon);

factor = beta*eta/4.;

/*printf("factor is %fin",factor); factor is beta*eta/4

integral_flag=O: /* for f'flling the matrix

*/

*/

*/

clrscrO;

gomxy(1,1);

printf("Filling %dX%d matrix for MoM",N,N);

for(n =O;n < N;n+ +)

{

gotoxy(5,5);

printf("integrating at row %d ",n + 1);

for(m=0;m < N;m+ +)

{

*(a + (N*n + m)) = matrix_element(n,m,integral flag);

/* (a + (N*n + m))- > real* = factor;

(a + (N*n + m))- > imag* = factor;

getche0;*/

}

}

gotoxy(10,10);

printf("L-U decomposition on matrix...ha_nXn");

/* write matrix to file mat.2d

if((fp..out= fopen("mat.2d",'wt"))= = NULL) {

puts("cannotinitializef'fleXn');

exit(D;

}

if((dataout= fopen('data.out","at"))= = NULL) {

puts("cannotre-open data_outIrfleXn");

exit(l);

}

time(&t);

fprinff(dataout,"haDate/Time matrix f'mi, hed: %sha',ctime(&t));

*/

T.R. #7



T.R.#7

for(n=0;n<N:n+ +)

for(m = 0;m < N:m+ +)

{

fprinff(fp_out,"%d %d %f %t_",n,m,

((a + N*n + m)- > real),((a + N*n + m)- > h-nag));

}

fclose (fp_out):

fclose (data_out);

/* Create the source vector (or excitation) b

excitation 0;

*/

/* write source vector to file ex.2d "1

if((fpout= fopen("ex.2d","wt")) = = NULL) {

puts("cannot initialize f'fle_");

exit(1);

)

for(n =0:n < N:n+ +)

{

f-prinff(fpout,"%d %f %fLn",n,((b + n)- > real),((b + n)- > imag));

}

fclose(fp_om):

*/

*/

/* Now, solve the matrix, First, LU decomposition

L_U_Decomposition0;

/* Write L-U decompostion to disk

if((fpout = fopen("l_u.2d","wt")) = = NULL) {

puts("cannot initialize f'fleLn");

exit(D;

}

det.real= 1;

det.imag = 0;

for(n = 0;n < N;n + +)

{

for(m = 0;m < N;m+ +)

{

fprinff(fpout,"%d %d %f %t'_",n,m,

((a + N*n + m)- > real),((a + N*n + m)- > imag));

}

det = Mulfiply(det,*(a + N*n + n));

9



}

if((data_out = fopen("data.out","at")) = = NULL)

{

puts("cannot open for D data_out f'de_n"):

exit(l):

I

time(&t):

fprinff(data_out,"_a_nDate/Time L-U Decomp done: %s_nXn",ctime(&t)):

fprinff(data_out,"Magnitude of Determinant of system is %eXnXn",
Magnitude(de0);

fclose(fp_out);

/* Do forward and backward substitutions to get x in Ax=b

Solve0:

*/

*//* WHte solution to cur.2d

if((fp_out = fopen("cur.2d"."wt")) = = NULL) {

puts("cannot initialize fdeXn"):

exit(l):

}

fprintf(data out,"The final current vector is:Xn"):

for(n=0;n < N:n + +)

{

fprintf(fp_out."%d %f %f_" ,n. ((x + n)- > real). ((x + n)- > imag)):

fprintf(data_out,"%d: %f+j(%f)ha",n + 1 ,((x + n)- > real).((x + n)- > imag)):

}

fprinff(data_out,"ha_Checking the matrix solution:'):

fclose(fp_out):

fclose (dataou0:

/* Before checking solution, read in old A matrix

if((fp_out=fopen("mat.2d","rt"))= =NULL) {

puts("cannot open f'de_n");

exit(l):

)

*/

for(n = 0:n < N;n+ +)

for(m=0:m < N:m+ +)

{

fscanf(fp_out,"%d %d %lf %lf",&nl,&ml,

&((a + N*n + m)- > real),&((a + N*n + m)- > imag));

}

fclose (fp_out):

10
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Solution_Check O;

farfree(a);

if((s = farcalloc((long) (370).sizeof (double))) = = NULL)

(

printf("Out of memory in pointer initialization_n"):

exit(l):

}

integral_flag = 1; 1" 1 is for far field pattern

if_max =0;

*/

gotoxy(1.17):

prinff("Computing the Far field scattering...'):

gotoxy(5.20):

for(n = 0;n < 361 ;n+ + )

{

if(!(n%36))

{

prinff(".'):

}

phi=n*10:

* (s + n) = pattern(phi,integral_flag),

if( (*(s +n)) > if max )

if_max = * (s + n):

}

if((data_out = fopen("data.out","at")) = = NULL) {

puts("cannot re-open data_out fileXn");

exit(D:

}

time(&t):

fprinff(data_out,"XnDatefrime FF data finished: %sXn",ctime(&t)):

fprinff(dataout,"Angle\t\t\tNormalized Pattem_n_n");

prinff("L,mormalization is %1fm",ff_max):

getch 0;

forOa=0:n < 361;n + +)

{

phi--D;

*(s + n) =*(s +n)/ff_max:
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fprinff(data_out,"\t%d \t_t%e_a",phi, *(s+n) );

}

time(&t);

fprintf(data_out,"XaknknRun Completion Time: %s_n", ctime(&t));

T.R. #7

fclose (data_out):

farfree(s);

_e(x):

freeOa);

return(O);

}

INTEGRAT.C

***************************

Does integration for

matrix elements...

***************************

*/

#include < stdio.b >

#include < eonio.h >

#include < math.h >

#include "cplxmath.h"

struct Complex fc-a(int n, int m, double x,int fig);

extem int N;

extem double radius;

struct Complex matrix_element(int n, int m, int flag)

{

int hi,k;

struct Complex integral_value,error,sum,y1 ,y2,tl ,t2,t3,t4;

double x,delta_x,er.delta_theta, a,b,h;

delta_theta = 360./(double)N;
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a = n*delta_theta;

b = (n + 1)*delta_theta;

integral_value .real = -9e-9:

integral_value .imag = 0,

ni=40;

do

{

hi+ =20;

sum.real=0;

sum.imag = 0;

delta_x = (b-a)/ni;

h = delta_x*3.141592654/180.;

tl = fcn(n,m,a,flag);

t2 = fcn(n,m,b,flag);

sum = Add(t1 ,t2);

for(k = 1;k < ni-1 ;k =k + 2)

{

x = a + delta_x'k;

yl =fcn (n,m,x,flag);

yl .real = 4*yl .real;

y 1 ./,-nag = 4*y 1.imag;

y2 = fcn(n,m,x + delta_x,flag):

y2.real = 2*y2.real;

y2.imag = 2*y2.imag;

sum = Add(sum,yl);

sum = Add (sum,y2):

}

yl = fcn(n,m,x + 2*delta_x,fiag);

yl .real = 4"yl .real:

yl .imag = 4"yl .imag;

sum = Add(sum,y 1);

sum.real = sum.real'hi3.;

sum.imag = sum.imag*h/3.;

error.real = fabs(sum.real-integral_value.real);

error.imag = fabs (sum.imag-integral_value.trnag);

T.R. #7
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er = Magnitude (error);

integral value.real = sum .real;

integral_value.imag = sum.imag:

I*prinff('%d is n, and value of integral is %fLn",n,integral_value);

getch0:

if(!(ni%20))

{

prinff('%d is n, and value of integral is %f= (%f')_n",ni,
integral value, real, integral value, imag);

getch0;

}

/*if(!(ni%lO00))

prinff(".");*/

)while (er> le-6);

integral_value, real = sum. real:

integral_value.imag= sum.imag:

/*prinff("final n at %d _n ,m): /

return integral_value;

)

FCN.C

/*

Th_ defines function

to be integrated

*************************

integral_flag (in main), is flag here.

flag = 0 - > matrix fill

flag = 1 -> far field panem

flag = -1 - > error computation

*/

#include < math.h >

#include "cplxmath.h"

/*#include < sldio.h > */

*/
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/* Prototype functions

double j_O(double x );

double y_O(double x );

*/

double basis(double t);

double testf(double r );

double r (double theta,double ka);

extem im N;

extem double radius;

struct Complex fcn(im n, int m, double t,int fig)

{
double k,t_m,r_m.r_p,x_m,y_m,x_p,y_p,fl ,f2,mag,beta,thickness,pi,dtr;

T.R. #7

struct Complex fcn_value,h0:

pi = 3.141592654;

k = 2*pi:

dtr= pi/180.;

beta = k;

thickness = le-6;

switch(fig)

{
case 0: /* matrix fill

t_m = (double) (m + 0.5)'360/(double) N;

t_m = t_m*dtr:

t = t*dtr;

r._m = r(t_m,k)-thickness;

x_m = r_m*cos(t_m);

y_m = r_m*sin (t_m);

r_p = r(t,k);

x_p = r._p*cos (t);

y_p = r_F*sin(t);

fl = basis (t)*r_p;

*/
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mag=beta*sqrt( ((x_m-x_p)*(x m-x_.p)) + ((y m-y_p)*(y_m-y_p)) );

hO.real =j. O(mag);

hO.imag = y O(mag):

break;

case I: /* farfieldpatlem m isphi*lO */

t* = dtr;

t_.m = (double)m/I0.;

t m* = dtr,

r...p = r(t,k);

fl = basis(t)*r_p:

f2 = cos(t_m-0;

f2 = f2*beta*r_p;

h0.real = cos (f2);

h0.imag = sin (f2):

}

}/* end of switch */

hO.real = 1.;

hO.imag = O. ;*I

fcn_value.real = h0.real*fl;

fcn value .imag = h0.imag*fl;

remm fcn_value;

}

T.R. #7

R.C

*************************************************

This function will describe the 2-d EFIE

surface to be solved by using an r(theta)

function

16



*/

/* includefiles */

/* External variables

extem double radius;

I* prototype functions

*/

*/

T.R. #7

/* function for a cylinder */

double r(double theta,double ka)

{

/* NOTE: theta is in radians!!! */

double r_value;

r_value = radius;

remm rvalue;

)

B_T_FCN.C

This module holds the basis

and

testing functions

**************************************************

*/

double basis(double t)

{

double basis_value:

/* for pulse basis, can use: constant! */

basis_value = 1;

/* for Galerkin, can use the following

/*

arts = tesff(r prime, theta_prime);

*/

*/
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return basis_value;

)

double tesff(double t_O

{

double tesff value;

/* for pulse basis, can use:

tesff value = 1 ;

remm tesff_value;

)

constant!

H O.C

/*

****************************************

This function returns the value

of J 0(x), by polynomial approximation

(ONLY to be used if no recursion

is done). See section 9.4 of

Abramowitz and Stegan

*/

/* Include functions

#include < math.h >

1" prototype functions, if any

double j_O(double x)

{

double a[7],b[8],x 3,x_3 2,

x_3_3,

x_3_4,

x_3_5.

x_3_6.

x_3_8,

x_3_10,

x_3_12;

double f_O,theta_O,j_O_value:

if(x < 3)

(

*/

*/

*/

18

T.R. #7



else

a[O]= 1.0;

a[1] = 2.2499997;

a[2] = 1.2656208;

a[3] -- .3163866:

a[4] = .0444479:

a[5] = .0039444:

a[6] = .0002100:

x 3= x/3;

x_3 2= x_3*x 3:

x 3 4-- x 3 2*x 3 2:

x_3_6--- x 3 4*x 3 2;

x_3_8 = x_3_4*x 34:

x3_lO = x_3_6*x_3_4;

x_3_12 = x_3_6*x_3 6;

j_O_value = a[0]

-a[1]*x 3 2

+ a[2]*x_3_4

-a[3]*x_3_6

+ a[4]*x_3_8

-a[5]*x 3_10

+ a[6]*x_3 12;

{
/*

a[O]= .79788456:

a[1 ] = .00000077;

a[2] = .00552740:

a[3] = .00009512:

a[4] = .00137237;

a[5] = .00072805:

a[61= .00014476;

coefficients for f 0

/* coefficientsfor theta_O

b[O]= 1:

b[1]= .78539816;

b[2] = .04166397;

b[3] = .00003954:

b[4] = .00262573;

b[5] = .00054125;

b[6] = .00029333;

b[7] = .00013558;

./

./
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x_3 = 3/x;

x 3_2=x_3 *x_3;

x 3 3=x 3 2*x 3;

x_3_4=x 3 3*x 3;

x_3_5=x 3 4*x 3;

x 3_6=x 3 5*x 3;

f 0-- a[O]

-a[1]*x_3

-a[2]*x_3 2

-a[3]*x_3 3

+ a[4]*x_3_4

-a[5]*x_3_5

+ a[6]*x_3_6;

theta O= b[O]*x

-b[1]

-b[2]*x_3

-b[3]*x_3 2

+ b[4]*x_3_3

-b[5]*x_3_4

-b[6]*x_3_5

+ b[7]*x 3_6:

jO_value = f_O*cos(theta_O)/sqrt(x):

)

return{j_O_value);

} /* end of function,j_O(x)

double y_0(double x)

{

double a[7].b[8].x_3,x_3_2,

x_3_3,

x_3_.4,

x_3_5,

x_3_6.

x_3_8.

x_3_lO.

x_3_12;

double f_O,theta_O,y_O_value;

2O

*/
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if(x < 3)

else

double pi= 3.141592654:

a[O] = .36746691;

a[1] = .60559366;

a[2] = .74350384:

a[3] = .25300117;

a[4] = .04261214:

a[5] = .00427916:

a[6] = .00024846;

x 3 = x]3:

x3_2 = x_3*x_3;

x 3 4=x 3 2*x 3 2:

x_3_6= x 3 4*x 3 2:

x 3 8= x 3 4*x 3 4;

x 3 lO=x 3 6*x 3 4;

x_3_12 = x_3_6"×_3_6:

y_O_value = (2/pi)*log (x/2.)*j_O (x)

+ a[O]

+ a[ll*x_3 2

-a[2]*x 3_4

+ a[3]*x_3 6

-a[4]*x_3_8

+ a[5]*x_3_lO

-a[6]*x 3 12:

{
/*

a[0] = .79788456;

a[1] = .00000077;

a[2] = .00552740;

a[3] = .00009512;

a[4] = .00137237;

a[5] = .00072805;

a[6] = .00014A76:

coefficients for f 0

/* coefficients for theta 0

b[0] =;:

b[1] = .78539816:

*/

*/
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b[2] = .04166397:

b[3] = .00003954;

b[4] = .00262573;

b[5] = .00054125;

b[61 = .00029333;

b[7] = .00013558;

x 3= 3/x:

x_3_2 = x_3 *x_3:

x_3_3=x 3 2*x 3;

x_3_4 = x_3_3*x_3:

x_3_5=x 3 4*x 3;
x 3 6=x 3 5*x 3:

f o= a[Ol

-a[1]*x_3

-a[2]*x_3 2

-a[3]*x_3_3

+ a[4]*x_3_4

-a[5]*x_3_5

+a[6]*x 3 6:

theta_O = b[O]*x

-bit]

-b[2]*x_3

-b[3]*x 3_2

+ b[4]*x_3_3

-b[5]*x_3__4

-b[6]*x_3_5

+ b[7]*x_3_6;

y_O..value= f..O*sin(thetaO)/sqrt(x):

}

remm(y_0_value);

} /* end of function, y.0(x)

EXCIT.C

/*

***********************

This file creates excitation

*/
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vector,b

*******--*******************

*/

#include < stdio.h >

#include < conio.h •

#include < math.h •

#include "cplxmath.h"

I* Declare external variables

extem hat N;

extem double radius;

extem struct Complex huge *a, *b, *x;

extem FILE *data_out;

/* Prototypes

double r(double theta,double ka);

void excitation(void)

{

hat n;

double dtr,x,pi= 3.141592654,theta,ka;

dtr = pi/180.;

ka=pi;

for(n =0;n < N;n+ +)

{

theta = (double) (n + 0.5)'360/(double)N;

x = r(theta,ka);

x = x'cos (theta*dtr);

(b+n)- • real = cos(2*pi*x):

(b + n)- • imag = -sin (2*pi*x);

}

if((data_out = fopen("data.out',"at")) = = NULL) {

puts("cannot open data out file for B[Xn");

exit(l);

}

fprinff(data_out,"_n_nThe B vector is:kn");

for(n =0;n < N;n+ +)

*/

*I
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{

fprinff(data_out,"%d %f+ (%0_",n + 1,((b+n)- > real),((b + n)- > imag));

}

fclose (data_out);

T.R. #7

L U.C

/S

*******************************

This function takes a

matrix (complex) and finds

the solution x, to Ax = b

************************************

*/

#include < stdio.h >

#include < conio.h >

#include < math.h >

#include < alloc.h >

#include < stdlib.h >

#include "cplxmath.h"

extem int N;

extem double radius;

extem struct Complex huge *a, *b, *x;/* These are for the matrix and

vector where Ax = b

extem FILE *data_out:

void L_U_Decomposition(void)

{

int i,j,k:

struct Complex sum_l;

/* Now, begin the L - U decomposition to fred the inverse and to solve

the matrix, also find the determinam...The U portion is in the

upper part of the original matrix memory, the L portion is in the

lower part of the original matrix memory, where it is assumed that

the L part has a unity diagonal. Thus, the determinant of the

matrix is the product of the diagonal elements */

*/
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for(k= O:k < N;k+ +)

{

for(i=k+ l;i<N;i+ +)

{

* (a + N*i + k) = Divide ( * (a + N*i + k),* (a + N*k + k) );

for(j =k + 1,j < N;j + +)

{

*(a + N*i +j) = Subtract(*(a + N*i +j),Multiply

(*(a+ N*i+k),*(a + N*k +j) ));

}

/* Compute the Determinant...by finding product of diagonal elements

sum l.real= I;

sum_l .imag = 0;

for(i=0;i < N;i+ +)

sum_l = Multiply(sum_l ,*(a + N*i + i) );

prinff("The determinant of the system is %e_n",sum_l);

/*--END OF LU DECOMPOSITION

return;

}

/*--BEGINNING OF "SOLVE" FUNCTION...

void Solve(void)

{

int i,j:

struct Complex sum l;

I* Forward substitution, to find the intermediate vector in LU solution*/

*(x}=*(b);

for(i= 1;i < N;i+ +)

{

sum_l .real = 0:

sum_l.imag = 0:

forfj = 0:j <i;j+ +)

{

sum1 = Add(sum 1,Mul6ply(* (a + N*i +j),*(x +j) ) );

}

* (x + i) = Subtract (* (b + i).sum_ 1) ;

*/

*/

*/

T.R. #7

25 j



/* Backward substitution, to complete process and find solution */

*(x + N-l) = Divide(* (x + N-l),* (a + (N)*(N-1) + N-l));

for(i= N-2;i > =0;i-)

{

sum_l.real = 0;

sum1 .h-nag = 0;

for(j =i+ 1;j < N;j+ +)

{

sum_l = Add(sum_l .Multiply(*(a + N*i +j),*(x +j) ) );

}

*(x + i) = Divide( Subtract(* (x + i),sum_l).*(a + N*i + i));

}

/*for(i = 0;i < N ;i + + )

{

prinff("%d: %f+j(%f)_n",i + 1,((x + i)- > real).((x + i)- > imag)):

} */

}/* END OF "SOLVE" FUNCTION */

/* REWRITE AS "SOLUTION_CHECK" FUNCTION

#include < time.h >

void Solution_Check(void)

{

int i,j;

double error;

struet Complex sum l,r 1;

FILE *out;

time_t t;

T.R. #7

/* Now, check the result by multiplying

the result by the original matrix */

error=O;

if((out = fopen('data.out",'at')) = = NULL)

{

puts("eannot open for error analysis, data_out f'de_a');

exit(l);

)

fprintf(out,'_a_a');
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for(i=0;i < N;i+ +)

{

sum_l .real = 0;

sum_l.imag = 0;

for(j =0;j < N:j + +)

{

sum_l = Add(sum_l,Multiply(*(a + N*i +j),*(x +j)));

}

fprinff(out," Ax=%f+j(%f); \t\tb=%f+j(%f)_a",sum 1.real.sum_1.1mag,((b+ i)-> real),((b +i)- > imag)):

r_.l = Subtract(sum_l,* (b + i));

error = error + Magnitude(r_1);

}

fpdnff(out,"_nThe total MSE in the computation is: %fLnkn",error):

felose(out);

l* END OF "SOLUTION_CHECK _ FUNCTION *!

T.R. #7

PATTERN.C

Module to compute far field

pattern due to calculated

current$

*/

#include < stdio.h >

#include < math.h >

#include "cplxmath.h"

/* Declare external variables *!

extern hat N;

extem double radius;

extem struct Complex huge *a, *b, *x;/* These are for the matrix and vectors

where Ax = b

/* Prototype fimctions */

struct Complex matrix_element(int n, hat m, int flag);

*!
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double pattern(ira phi,hat flag) /*_BEGINNING OF FUNCTION_*/

{

hat n;

double solution;

struct Complex sum_if, term if;

sum_if.real = O;

sum_ff.imag = O;

for(n =0;n < N;n + +)

{

term_ff = matrix element(n.phi.flag);

term_if= Multiply (term_ff.*(x+n) );

sum_ff = Add (sum_if.term_if);

}

solution = Magnitude (sum_if);

return solution;

}

CPLXMATH.H

#ifndef _CPLXMATH.H_

#define _CPLXMATH.H_

/* */

/* Jeff Swart October, 1992 Turbo C+ + 3.0 */

1" */

/* #defines. structures, and function prototypes for CompMx math. */

/* */

*****************************************************************************

/* Pi

#define Pl 3.1415927

*/
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1" Complex number in Cartesian form

struct Complex

{

double real,

imag;

}:

*/

l* Real part of Complex number **

1" Imaginary part of Complex number */

T.R. #7

/* Function prototypes */

*****************************************************************************

struct Complex Divide(struct Complex hum_cart,

struct Complex dehorn_cart);

/* Added by .[. Richie, January, 1993 */

struc_ Complex Multiply(struct Complex numl.

struct Complex num2);

strucl Complex Add(struct Complex addl,

struct Complex add2);

struct Complex Subiract(struct Complex subp,

struct Complex subm);

double Magnitude(slruct Complex z);

struct Complex Conjugate(struct Complex z);

#endff

CP_TH.C

#include < math.h >

#include "cpLxmath.h"
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*****************************************************************************

l* "1

/* Jeff Swart October, 1992 Turbo C+ + 3.0 "1

/* .1

i* Basic Complex math functions. Prototypes are located in CPLXMATH.H. "1

I* *l

1" 'RadToDeg' will convert a value given in radians as a double to the */

/* equiv_ent value in degrees, and return _e _su_ as a double. */

p_***************************************************************************

T.R. #7

*****************************************************************************

l* 'DivComplexCart' will divide two Complex numbers given in Cartesian "1

/* RENAMED TO Divide: J. richie, 2/93 */

/* form as structures of type 'can_Complex', and return the result in */

/* Cartesian form as a structure of type 'cart_Complex'. */

*****************************************************************************

struct Complex

result ;

1" Polar form of numerator "1

/* Polar form of denominator

1" Polar form of result */

*/

double mag_l ,mag_2,angle_l,angle_2;

l* Convert numerator and denominator to polar form */

mag_l = Magnitude(num);

mag_2 = Magnitude (denom);

angle_l = atan2(num.imag,num.real);
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angle 2 = atan2(denom.imag,denom.real);

/* Calculate polar form of result

magl = mag_l/mag_2;

angle_l = angle_l-angle_2:

result, real = mag_l *cos (angle_l);

result.imag = mag_l*sin(angle 1);

*/

T.R. #7

/* Return Cartesian form of result

return result;

} /* End function"Divide'

*/

*/

/*

ADDED BY J. RICHIE, JANUARY 1993

Function to obtainproduct of two Complex numbers */

structComplex Multiply(structComplex numl,

su-uctComplex aura2)

{

/* Variable declarations */

structComplex result:

/* Code

result.real = numl.real*num2.real-numl.imag*num2.imag;

result.imag = numl .real*num2.imag + numl .imag*num2.real;

return result;

}

/* Function to obtain sum of two Complex numbers

struct Complex Add(struct Complex add1,

struct Complex add2)

{
I* Variable declarations */

*/

*/

31



strict Complex result;

I* Code */

result.real = addl .real + add2.real;

result.imag = add1 .imag + add2.imag;

remm result;

}

/* Function to obtain difference of two Complex numbers */

struct Complex Subtract(struct Complex subp,

struct Complex subm)

{
/* Variable declarations */

struct Complex result;

/* Code */

result.real = subp.real-subm.real:

result.Lmag = subp.lmag-subm.imag;

return result;

}

/* Function to return the magnitude of a Complex number */

double Magnitude(struct Complex z)

{

double mag_value;

mug_value = sqrt((z.real*z.real) + (z.imag*z.imag)):

return mag_value:

}

/* Function to return the Complex conjugate of a Complex number */

swuct Complex Conjugate(struct Complex z)

{

struct Complex eonjug:

conjug.real = z.real;
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conjug.imag -- (- 1)*z.imag;

return conjug;

}

T.R. #7

HED_FT.C

#include < stdio.h>

void print_banner(FILE *fp)

{

fprintf(f'p,"_rlha ***********************************************************

fprimf(fp,"_nhu 2-D TM'z code wrinen by James E. Richie, Ph.D.");

fprlntf(fp," _nha **********************************************************

}
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APPENDIX 11

T.R. #7

RP.C

/S This program should be used to get the dataintoa format

which ismore useablethanthe old NEC format,by taking

the columns and massaging them to get new columns thatare

meaningful.

*/

/* Include appropriate header files */

#include < stdio.h>

#include < string.h>

#include < math.h >

/* Prototypes for the functions used by this portion

void read_data(void);

/* Define global variables

float x start.y_start,z,x_incr,y_incr;

int nx.ny;

char power[13].antenna_length [3]. freq_code [3],

*/

Kle_name [13],Kle..out[13];

*/

/* BeginnIng of main module

main(void)

{
int i;

*/

*/
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/* Main Menu, that switches between 2d (surface) plots, and ld plots

for NEC data, and can be used to simplify much analysis

for(i= 0;i < 40;i+ +)

prinff("_n");

for(i=0;i < 10;i+ +)

prinff('_a");

*/

T.R. #7

read_data0;

return(O):

} I* End of Main */

This module reads in all the data

*************************************************************

*/

I* Includeheader files

#define MAX LINE LEN 140

/* Prototype functions (if any)

*/

*/

void read_data(void)/*

{

int i,j;

FILE *fp_in,*fp._out;

float x,y,el,e2,e3,e4,e5.e6;

char line [140],*ch,chr;

I* Get and verifyinputf'dename

*!

*/
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prinff('enter file name (output file from NEC): "):

scanf('%s',file_name):

fp_in = fopen(file_name, "r");

if (fp in = = NULL)

prinff("Error opening input file %s_a', fde_name);

I* Now, need to Filter through the fast x lines of output file from

NEC to get to data we want

t* Now, read in the field data

nx=0;

do{

nx+ = 1:

fgets(line, MAX_LINE_LEN, fp_in);

}while( (stmcmp(line. "Angle", 5) [ = 0)&&(nx < le4));

if(nx > 9e3)

{

prinff("wrong file type_n");

exit(D;

}

,/

*/

T.R. #7

prinff('Enternumber ofdatapoints(allthetaorphi):");

scanf("%d',&nx):

ny= 1;

prinff("Enter the output file name: ");

scanf("%s",file_out);

fpout = fopen(file_out, "w");

if (fp_out = = NULL)

{

prinff('Error opening output file %s_". file_out);

exit(l):

}

fprinff(fp_out,'%d%d_",nx,ny):

for(j=0;j < nx;j + +)

{
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fscanf(fp_in,'%f%f", &el.&e2 );

fprinff(fp_out,"%f%f_",el,e2);

} /* thisclosesthej loop

fclose(fp_out):

printfC"_n');

/* closethe f'de

fclose(fp_in);

printf("filesuccessfullyparsed and closed_n_');

)

*l

*/

T.R.#7
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7.3 GO/GTD Ccd_ and Report

The following is a technical report from the Marquette University Electromagnetic

Simulations Laboratory that discusses the theory and codes used in the GTD analysis. This report

was also the required report for an independent study performed by Mr. Francis W. Forest under

the supervision of Dr. Richie. The independent study is applied to Mr. Forest's progress toward

his Ph.D. requirements and has laid the groundwork for a dissertation topic.
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Analysis of Electromagnetic Scattering from a 3-D Cylinder Using GTD

Technical Report # 12

Electromagnetic Simulations Laboratory

Francis W. Forest

December 16, 1994

INTRODUCTION

In numerically solving the majority of electromagnetic scattering problems the method used is

usually dictated by the size of the scatterer as compared to the wavelength of the incident wave. An

attempt to solve a problem which entails a scatterer that is relatively large compared to the incident

wavelength can lead to a solution that is poorly convergent, inefficient, and impractical if the

appropriate numerical method is not used. Canonical solutions exist for simple geometry problems.

They are of the form of infinite summation eigenfunetion solutions. Due to the infinite number of

terms and the fact that a high frequency analysis is desired, the canonical solution as it stands is

intractable. For scattering from a large conductive object at high frequencies the Method of Moments

(MOM), Finite Element Analysis (FEA), Finite Difference Time Domain (FDTD), and Conjugate

Gradient Method (CGM) fall into the category just stated. Numerical methods involving asymptotic

solutions such as Geometrical Optics (GO) are better suited for high frequency scattering from large

objects. For this reason, an investigation will be conducted in order to determine if GO and its

counterpart the Uniform Theory of Diffraction (UTD) are appropriate for solving the three

dimensional circular cylinder problem.

THEORETICAL DISCUSSION

This section contains a brief theory of geometrical optics, the Geometrical Theory of Diifraction

and Uniform Theory of Diffraction. The solutions techniques in this section will be applied to the



finite cylinder model.

The analysis of high frequency electromagnetic scattering from a large conductive structure is

quite fascinating. At sufficiently high frequencies, the phase of the electromagnetic wave oscillates

very rapidly, which results in destructive interference with incoming waves. As a result, only

localized (stationary phase) points remain and these are the main contributors to the scattered

radiation. Reflection as well as diffraction is a localized phenomenon [ 1, pp. 754] [2]. Consider a

simple conductive body as in Figure 1-1. Using GO one observes that the scattered electric field is

only present on the illumination side of the scatterer. On the shadow side no GO field exists. Does

this suggest that no electromagnetic radiation exists in the shadow region? Certainly not. It does

suggest that other factors and contributors are involved in calculating the total scattered field from

a conductive object. For the problem in Figure 1-1, the electric fields in the shadow region originate

by diffraction of the incident field into the shadow region. The diffraction can come in the form of

straight edge, curved edge, surface, or higher-order diffraction. The numerical technique used with

GO to modify the fields in the illumination region as well as provide the appropriate fields in the

shadow region, due to diffraction, is the Geometrical Theory of Diffraction (GTD). The method

which ensures that the fields are finite at a shadow interface is known as the Uniform Theory of

Diffraction (UTD).



illumination region

shadow region

Figure 1-1: Perfectly conducting object and GO rays.
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GEOMETRICAL OPTICS (GO)

Geometrical optics is a ray tracing technique for approximating the wave propagation of the

incident, reflected and refracted fields. Geometrical optics gets its name from its original use as a

technique for analyzing the propagation of light at high frequencies. Treating an electromagnetic

wave like that of a light wave will provide appropriate magnitudes, but phase and polarization

properties are not described. In order to obtain these properties a Luneberg-Kline high-frequency

expansion can be used [3, pp. 166]. Basically, an asymptotic high frequency solution to Maxwell's

equations in a source-free simple medium is desired. Begin by writing the electric field for large

in a series of

E(R,o) = e -JP°t(R) _ Era(R)

m-o (jio )"

(l-l)

where R is the position vector and [30 is the phase constant for free-space. Substituting this series

into the Helmholtz wave equation for the electric field E and noting the condition that the divergence

of E is zero, an eikonal equation and transport equations are obtained by equating like powers of ¢a

[3, pp. 166]. Since the first-order solutions of the electric field of(l-l) are of main interest for now,

enforcing the conditional equations in [1, pp. 751] will allow the first-order term of(l-l) to be

E(s) = eqP°*(°Eo(s) (1-2)

where s is the distance along the ray path. From [3, pp. 166] it can be shown that the electric field

a distance s away from some reference can be written as
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PIP2 e -jp" (1-3)E(s) Eo(O) (Pl+s)(P2

and is referred to as the GO field. In (1-3), E0(0 ) is the complex electric field at the reference point

s = 0, Pl and ,o2 are the radii of curvature &the wave front at s = 0. The distance along the ray path

is s. An astigmatic (not meeting at a single point) tube of rays is shown in Figure 1-2 which identifies

the parameters used in (1-3). The quantity under the square root in (1-3) results from the

requirement of conservation of power within the tube of rays. The power passing through the

differential surface do o is the same as that passing through do. This approach is used to find the

appropriate expressions for the GO scattering equations.

In general, the electric field at a distance s from the reflection point on a scatterer is

Er(s) = E i(Q)RA(s)e-JP" (1.4)

For simple medium and a perfectly conductive scatterer

(l-S)

where erefl is the reflection coefficient of the electric field and mrefl is the reflection coefficient of

the magnetic field.

In (1-4), A (s) is the spatial attenuation term. It contains the spreading and divergence information

of the reflected wave. The spatial attenuation term relates the magnitude of one wave front surface

with another wave front surface, and depends on the radii of curvature of the object, as well as



distance s. The spatial attenuation factor A(s) is [1, pp. 755]

I • •

A(s) = P 1 P 2 (1-6)
• r

(Pl+S)(P2 +s)

where P'I and pr 2 are the principal radii of curvature of the reflected wave front at the point of

reflection Q. The phase factor e"jps is simply the spatial phase shift that occurs over the distance s

taken from the reflection point on the surface to the observation point.

doo /// \\

caustic lme _ _ __ i

/

Figure 1-2: Astigmatic tube of rays and caustic lines.



UNIFORM THEORY OF DIFFRACTION (UTD)

Geometrical Theory of Diffraction (GTD) is only confined to the small number of canonical

solutions available. Three types of diffraction will be discussed: 1) diffraction l_om a straight edge,

2) diffraction _om a curved edge, and 3) diffraction from a smooth curved surface. The information

presented in this section will be applied to the finite cylinder model.

A scattered electric field created by diffraction is described by [ 1, pp. 767]

E a = E i(Q)Dd(s',s)e-JP" (1-7)

where D is a diadic and is termed the diffraction coefficient. The diffraction coefficient has functions

such as calculating fields in the shadow region, modifying the field in the illumination region and

matching the field conditions at the transition regions.

Fermat's principal of diffraction is used throughout the theory of ray tracing. Simply stated,

Fermat's principal says that the "network" of rays between two points P1 and 1°2 (with a third point

Po on the surface of an object and is stationary) follow a ray path (P1 Po P2) that makes the optical

distance between PI and P2 an extremum (minimum). Fermat's principal is basically a variational

principal on the classical GO theory [4, pp. 133].

tithe components of the incident and diffracted fields are referenced by an edge-fixed coordinate

system (Figure 1-3a) the dyadic diffraction coefficient has been found to be the sum of seven dyads

[5]. This corresponds to a 3x3 matrix with seven non-vanishing elements. By introducing an

alternative coordinate system, which changes the reference point of the rays, the diffraction coefficient

could be reduced. The ray-fixed coordinate system is shown in Figure 1-3b. By defining a plane of

diffraction and making appropriate reference to the incident and reflected field components, the

diffraction coefficient is reduced to a 2x2 matrix with two non-vanishing elements [1, pp. 808].
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Y

(a)

Z

(b)

Figure I-3: (a) Edge-fixed and (b) Ray-fixed coordinate system.



It is not the intent of this paper to present a detailed theoretical discussion of the development of

the diffraction coefficient and the solution of certain canonical models. In this report, only a brief

theoretical discussion will pursue with the main emphasis on attempting to solve the electromagnetic

scattering of a three dimensional cylinder using UTD.

STRAIGHT EDGE DIFFRACTION

Straight edge diffraction is a certain type of diffraction that can be solved using UTD because it

resembles a canonical structure which has an exact solution. From a localized standpoint the

diffraction from a straight edge is the same as diffraction from a wedge. The wedge is a canonical

problem which has an exact solution [4, pp. 63].

Consider the situation of a line source in close proximity to a two dimensional perfectly

conducting wedge as depicted in Figure 1-4. As the observation point moves about the z-axis at an

angle _band a distance p from the wedge tip, the total electromagnetic (EM) field is comprised of the

summation of different fields in different regions. If the observation point is anywhere in region 1,

the total EM field is the superposition of the incident, reflected, and diffracted fields. Region 2

contains the incident and diffracted fields, and region 3 only contains the diffracted field. Note the

reflection and incident shadow boundaries at ¢, = n--_b' and _b : n'+ _b', respectively. Care must be

taken when specifying the angles _band _b'. They are to be measured from the fixed face of the

wedge.



P(p, ¢, z)

source

Figure 1-4: Line sourcein close proximity to a twodimensional perfect conducting

wedge.
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Thediffi'actioncoefficientfor the wedge-type problem is obtained in the following fashion [ 1, pp.

771-773]:

1 Modal techniques are used to find the total radiated field for an electric line source, which

upon satisfying the boundary conditions, a Green's function solution is obtained. The Green's

function solution is in the form of an infinite series. The series is an exact solution to the

time-harmonic inhomogeneous wave equation of a line source and wedge in simple medium.

2 The Hankel function on the Green's function solution is replaced with the first term of its

asymptotic expansion when the line source is assumed to be far away from the vertex of the

wedge. This is then substituted into the Green's function and an expression for the electric

and magnetic fields is obtained [ 1, Equation 13-40a].

3 Due to the rapid variation in phase of the field and the boundary conditions, in order to use

the classical Method of Steepest Descent for isolated poles and saddle points, the resulting

equation in step 2 must be transformed into an integral and then evaluated for large pp using

the Method of Steepest Descent.

An excellent presentation of the execution of the above steps is given in [1, pp. 771-796]. The

resulting diffraction coefficient is known as Kellefs diffraction coefficient and is valid provided the

observation point is sufficiently removed from the "transition regions". At the shadow boundary the

coefficient approaches infinity. The region in the neighborhood of the incident and reflected shadow

boundary is referred to as the transition region. In the transition region, the field undergoes its most

rapid changes [1, pp. 783]. A modification of Keller's diffraction coefficient keeps the fields finite

at the incident and reflection boundaries and is known as the Uniform Diffraction Coefficient. The

Uniform Diffraction Coefficients are given as [5]
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4

. C-(_..,)F[_pg-(_)]} o-s)

where

ot/

F[_pg'(_')] = 2j_ pg'(_ _)e _p p,'(C' f e-J_2d'c

_)

In (1-8), W (p,[, n) is referred to as the incident diffraction coefficient for a unit amplitude incident

plane wave, and Dr (p,_+, n) is the reflected diffraction coefficient for a unit amplitude incident plane

wave [1, pp. 787]. It may sound strange that one identifies an incident and reflected diffraction field,

but this is merely the terminology used to say that the diffraction coefficient is computed and

referenced from the incident and reflected shadow boundaries, respectively. In the above equations
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g_ and g are representatives of the angular separation between the observation point and the incident

and reflected boundaries, respectively. When observations are made along the shadow boundaries,

g_=0.

Upon performing the asymptotic expansion and the Method of Steepest Descent, part of the field

solution resembles the Fresnel integral. In order to adequately express the field quantities in the

transition region, a Fresnel transition function is used which is proportional to the Fresnel integral.

Asymptotic expressions for the transition function are found in [5]. The Fresnel routine F[ 13pg±(_ 7)]

is a measure of separation between saddle points and poles.

If both the source distance p' and observation distance p from the edge of the wedge are finite,

a more accurate estimate of the distance p would be the so-called distance parameter L [1, pp. 805].

For the case presently being discussed,

(1-9)

In general, L can be found by satisfying the condition that the total field must be continuous along

the incident and shadow boundaries. As a result [5],

L

t t t . 2,'.,
s(p,+s)PlP2Sm P o

t 1 t

p,(pl+s)(p2+s)
0-1o)

where p/, p/= radii of curvature of the incident wave front at the diffraction point, p/= radius of

curvature of the incident wave front in the edge fixed plane of incidence, and s = the distance from

the diffraction point to the observation point. The angle fl'0 is the angle at which the incoming wave
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is obliquelyincidentontothe diffraction point. Using the ray-fixed coordinate system:

g =

s sin 2_,o plane wave incident

ss' sin _ o sin _ 'o cylindrical

ssin 13o+s'sin I_'o

ss' sin 2[_ 'o

$+$*

wave incident

conical and spherical wave incidences

(1-11)

where s' is the distance from the source to the diffraction point.

The final scalar diffraction coefficients D s and D n (soft and hard diffraction coefficients,

respectively) are named alter their polarization resemblance with acoustic boundary conditions of the

way the pressure field vanishes on the surface. Soft refers to a Dirichlet boundary and hard implies

a Neumann boundary. Obviously, in electromagnetics one is referring to the electric and magnetic

field polarization with respect to the plane of incidence. The diffraction coefficients are given as [3,

pp. 177]

Ds(Z; ¢, ¢';n, P'o)

Dn (L;#_,_';n, [_'o)

-- D '(L,@-@',n,l_'o) - D'(L,@.dp',n,_'o)

= D '(L, tb-_p',n,_'o) + D "(L,Cp÷@',n,_'o)

(1-12)

where the scalar diffraction coefficients in (1-8) have been normalized to V/'L". Therefore, (1-8) can

now be generalized as

D '(L,¢-¢',n,_'o)

.It

4
e

2-v_ psinP'o
ot . F[ 13Lg'(¢-¢')] ,

2n

1Pot . F[ f_L g-(O-##') ]
2n

(1-13)
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and

D "(L,_÷_',n,p'o) =
e 4 {cot

2n V/2 _ [3sin [3'o

+(4,+4;) IF[ p Lg'(,I, +4,')] +

2n J
(1-14)

cot
-(4, ÷_')

2tl

normalized by V_.

Returning to (1-7), the way in which the field intensity varies is described by the spatial attenuation

factor A(s',s). For plane and conical, cylindrical, and spherical wave incidences, A(s',s) is,

respectively:

1

A(s',s) =

1
A(s',s) =

(1-15)s sin _Bo

a(s',s) =
St

S(S' +S)

As an example of the characteristics of the diffraction coefficients, consider a plane wave with

unit amplitude incident on a half-plane at _' = 30 °. A half-plane is created when the angle of the

wedge in Figure 1-4 is such that n = 2. Using (1-7) and (1-12)-(1-14), plots of the magnitude of the

incident and reflected diffraction fields for soft polarization at the indicated observation points

P(p,_) are shown in Figures l-Sa and b.

the diffraction function is more broad.

Note that if the observation point is close to the half-plane

Recall that if Keller's diffraction coefficients were used, the

field magnitude would approach infinity as the observation point approaches the shadow boundary.
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Figure 1-5a: Incident Diffracted Field
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0.60

Figure 1-5b: Reflected Diffracted Field

Soft Polarization - Plane Wave Diffraction By A Half-Plane
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CURVED EDGE DIFFRACTION

Recall that diffraction is a localized phenomenon. Therefore, a diffraction point can be

approximated by a wedge such that its straight edge is tangent to the curved edge at the diffraction

point. In addition, the wedge is oriented so that the plane surfaces are tangent to the curved surfaces

of the structure. This is illustrated in Figure 1-6. It seems feasible then that the theory developed for

the straight edge also applies for the curved edge problem. Since the curved shape of the structure

will alter the diffraction field, the curvature must be accounted for. The corresponding modifications

are made to the distance parameter L and the spatial attenuation factor A(s',s) since the arguments

of each involve the shape of the reflected wave front and caustic locations due to a curved edge. It

is described in [1]-[5] that

Zt=

p,(p,1+s)(p2+,$ ')

(1o16)

and

r /"

S (p r+S) p ip 2b'in2l_'0

r r r
P (PI+S)(P2 +s)

(1-17)

where

p/and p2 _ = radii of curvature of the incident wave frontat the diffraction point

PI" and ,02"= principal radii of curvature of the reflected wave front at the diffraction point

p,'= radius of curvature of the incident wave front in the edge-fixed plane of incidence

pr= distance between the caustics of the diffracted ray in the direction of reflection.
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/k

_s ¢

X

in Y-Z plane

130 in X-Y plane

Figure 1-6: Position of wedge with respect to a diffraction point for curved edge
diffraction.
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Thesuperscriptsro and rn indicate that all of the radii of curvatures pertaining to the reflected wave

must be calculated from the reflection boundary r:-_' and the reflection boundary (2n-1)Tr,

respectively. Thus, the uniform diffraction coefficients for curved edge diffraction are

D '(L ',_-(b',n,_3'o)

I¢

e 4 _cot +

t
0-18)

+(t_-_')2n ]F[[JL 'g'(_- _')]

°',] }cot. F[_L 'g-(¢-_')]
2n

and

D "(L ',4)÷4)',.,P'o) =

cot

_j__

e 4 {cot
2, ¢2"_ [_sin _' o

= ÷(_÷¢')2. ]F[pL'_'g'(_÷_')]

n -( @*t_') ] F[ p L '' g-(@*_') ] }2n

÷

(1-19)

For A(s',s),

l PcA(s',s) = s(Pc÷s)

1 1 R.'(_'-Y')

Pc P, PgSin 2_' 0

0-20)

where

Pc = distance between caustic at edge and second caustic of diffracted ray
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p_ = radius of curvature of the incident wave front in the edge-fixed plane of incidence which

contains unit vectors g and _.

pg = radius of curvature of the edge at the diffraction point

r_ = unit vector normal to the edge at the diffraction point and directed away from the center of

curvature

g' = unit vector in the direction of incidence

g = unit vector in the direction of diffraction

fl'o = angle between g' and tangent to the edge at the point of diffraction

,_ = unit vector tangent to the edge at the point of diffraction.

CURVED SURFACE DIFFRACTION

For curved surface diffraction, the diffraction process takes place when an incident ray grazes the

surface of a smooth curved structure. The ray is essentially divided into two parts at the grazing

point Q: one ray continues in a straight path and is considered a GO ray, the other part follows the

surface of the object into the shadow region as a surface wave (creeping wave). This surface wave

sheds diffracted rays tangentially as it propagates. This effect is shown in Figure 1-7. As a

consequence of Fermat's principal of surface diffraction, the surface ray is the shortest ray distance

between Q and a point Q, on the shadow side, as depicted in Figure 1-8. The surface ray follows a

geodesic curvet The incident and diffracted fields are phase matched to the surface ray at points Q

and Q,.
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incident ray

Y
diffraction point

GO ray

diffracted rays
:-X

Figure 1-7: Curved surface diffraction

Y

A A

d

_X

Figure 1-8: Fermat's principal of surface diffraction.

22



If the object was a dosed surface such as a circular cylinder, it could be imagined that the surface

wave continues around the object on a geodesic path an infinite number of times and sheds diffracted

rays tangentially all along the path. This would seem to indicate that diffracted waves exist in the

illumination side. It should be noted however that the surface ray decays exponentially as it

propagates along the surface. Therefore, diffracted fields in the illumination side are considered

negligible for large cylinders. Surface ray fields should not be considered real physical quantities.

Their purpose is to serve as a transfer function between the incident field at Q and the diffracted field

at Q,[3, pp. 189].

It was explained that the modified Fresnel function was used in edge diffraction to more accurately

predict the diffracted electromagnetic field in the transition regions. In curved surface diffraction the

field behavior is more like that of the Airy function (described in [4, pp. 22-23]). An in depth

explanation into the theory of surface diffraction would be very involved at this point, therefore the

reader is directed to the literature for more details.

It is not necessary to discuss the foundation of curved surface diffraction from a generalized sense.

The appropriate equations used in calculating the smooth curved surface diffraction will be detained

until the application part of this paper. At that time only equations pertaining to a circular cylinder

will be discussed.
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APPLICATION

An evaluation into the validity of using GO and UTD as a numerical technique for solving the

finite circular cylinder scattering problem will be given in this section.

The cylinder model can effectively be partitioned into three distinct parts (objects) as shown in

Figure 2-1. As an initial step, a two dimensional analysis will be done on each part separately. If GO

and UTD are successful then the model will be expanded to three dimensions.

The following parameters are used throughout the investigation:

Incident wave

• uniform electric field plane wave

• soft polarization (electric field is parallel to the plane of the disk)

• oblique incidence at 120 degrees (for the disk and ring)

• normal incidence (for cylinder)

• operating frequency: 1.57542 GHz (X = 0.193856 m)

Observation

• observation distance: 300 meters (from center of object)

• in simple medium

Scatterer

• finite cylinder with perfect electric conductor surface
• radius a = 2.5 meters

• length = 9.0 meters

• in simple medium

Part A - Top of Circular Cylinder

The top of the cylinder resembles a circular disk of radius 2.5 meters. Due to the physical

structure of the disk, the scattered field is comprised of a reflected field (from the flat surface) and

a diffracted field (from each of the main diffraction points). This is shown in Figure 2-2.
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PART A - Flat Disk

PART B - Cylinder

_- PART C - Ring

Figure 2-1:Parts of a closed circular cylinder.

Q1 Q_

Figure 2-2: Reflected and diffracted rays from a two dimensional flat disk.
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Whena uniformelectricfield plane wave is incident onto the disk with soft polarization, the first-

order diffraction points are located on the disk as shown in Figure 2-3. These points, Q1 and (2: ,are

the dominating diffraction points (stationary points). Other first-order diffraction points tend to be

negligible or cancel one another and will not be considered in the problem. Therefore, the diffraction

from the disk can be reduced to a two dimensional problem.

Figure 2-3: Diffraction points of a circular disk due to an incident plane wave with soft

polarization orientation.

A complete analysis would require higher-order diffraction terms which would account for

polarization dependence [6]. However, since the electric field is parallel to the disk surface, second-
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order regular diffractions do not occur at Q1 and Q2 for soft polarization. Hard polarization does

produce first-, second-, and third-order diffractions at QI and (22 [6]. Other types of diffraction due

to creeping waves and slope diffraction are existent, but will not be included. A brief discussion of

these diffraction types will pursue later. The diffraction from the curved edge of a disk can be

obtained by assuming that the diffraction points are the same from the tip of a half plane. This is

illustrated in Figure 1-6 when n = 2.

The incident uniform plane wave can be expressed as

_t,,¢ = axEoeJp(ymO.zeo_o ) = ax Eoe/l_(Ye°e¢'zmt') . (2-1)

In cylindrical coordinates

y = pcos_ and z -- psin_ , (2-2)

and using the trigonometric identity

cos(X-B) = cos A cos B + sin A sin B , (2-3)

the incident electric field becomes

= e/Is vc°a{t-t') (2-4)

Similarly, the reflected field is

_rell = - ¢ZxEoe jp(yan0'-zstao') = - dxEoeJPPlc°_(_'¥)] (2-5)

The diffracted electric fields from Q1 and Q2 for bistatic field scattering will now be calculated.
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Recall from (1-7),

E "d-- E i(Q)DA(s',s) e-J_' (2-6)

Since only soft polarization is considered, D in (2-6) is simply D, of(I-12).

In Figure 2-4a, sl, s:, _1 and 4'2 are ray coordinate values, while p and _p are the main coordinate

values. Normally, reference is made to the main coordinate system, therefore the ray coordinates

must be made with respect to p and 4'p. From Figure 2-4b

sl: _/(a+y')2 + (z') 2 (2-7)

Note that

p2 -- (y')L(z') 2 and y' -- p cosCp (2-8)

Substituting (2-8) into (2-7) reveals

s I = _/p2,a2+ 2ap cos _p (2-9)

Using another Law of Cosines, _p is found from (2-7) and (2-8) with

y' = Slcog@l-a . (2-10)

Therefore,

(2-11)
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Similarly,for diffraction point Q2

s 2 = _/p2+a2- 2ap cos Op (2-12)

and

_:Z : e°s-l[ p2-s_-a
2as 2

(2-13)

The electric field at the diffraction points Q: and Q2 are

ff' (Q E(Q e/pac°6'l/ (2-14)l) = axEoe-iPa_'l" and 2) = dxEo

The attenuation factorA(s',s) from (1-20) will now be calculated. From Figure 2-5, p_ = a, Pe

= % and the vectors .¢,g and r$ are
£

r =

= [O,cos¢ ,sin,I,]

_,,:= [0,-1,0] @Q1

_a = [0,1,0] @Q:

(2-15)
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Figure 2-4: Geometry of disk for (a) the general case, and (b) diffraction point Q_.
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Figure 2-5: Geometry showing directional and normal vectors at the diffraction points.

Upon substituting (2-15) into (1-20),

a(s',sl) (2-16)

where
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a

Pc1 = cost_'+coS_ (2-17)

For the diffraction point Q2,

P _ (2-18)A (s', s2) = s2(P c2+s2)

where

a

p c2 -- (2-19)
cos ¢'+cos¢

The phase function from the diffraction points Q1 and Q2 are simply e "i_'1 and e "jl3'2, respectively,

where s 1 and s2 are given in (2-9) and (2-12).

Next the distance parameters L i, U °, and L rn for Q1 and Q2, which are used in (1-18) and (1-19),

will be calculated. Recall from (1-16)

Zt=

l t t 2
s(p,+s) p i p2sin [3'o

t l 1
P,(PI+S)(P2 +s)

Since the incident wave is a uniform plane wave, p'; = P'2 = pi = oo. Therefore (1-16) reduces to

LI=
I . 2 ,OsP2sm

l
(p2+s)

(2-20)

Assuming P'2 >> s,
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l . 2
sp2sm ff'o

LI=

I

P2

=_ L t = sfm2[_,o (2-21)

For the disk-shaped problem at hand:

s:s I for Ql ,

s:s for

at_l _ _o -
2

Therefore,

Ll _ = s t and L; =s 2 . (2-22)

The radii of curvatures in the distance parameters L "° and L"' of (1-17) are calculated from the

respective boundaries _-4/and [(2n-1)_-qb'] at the diffraction points QI and Q2. Summarizing the

results

Q_ Q2

Pr =

2 cos 4)"

2 2
p == p =®1" r

r 1 r 1
Pro = Pr Pro = Pr

r 1 r 1
Pr. = Pm Pm : Pm
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Inputting the above information into (1-17) for the condition fl'o = r_/2 shows

L_° = L _ = s (2-23)

for both Q1 and Q2.

As mentioned in the theoretical section, care must be taken with respect to the how the

appropriate angles are to be taken. In referencing Figure 2-4a, note that

'1'2 = 3_-_2 n<4,2<2n

Therefore, in (1-18) and (1-19), g" and g÷ must be replaced with

g- = ___' ; g" _- _+,' (2-24)

Using the calculated quantities from (2-5)-(2-24), the total scattered electric field from the disk

is

E_at= Eta9 + E*a(QI) + E'a(Q2) (2-25)

where

E_°--g'_o - a Eo_j"_[_(*'+')] [_,a_a4,:] ,: (--,I,'),

E_a (Q , ) = E i(Q , ) D s(L ;_l , ,ll,', ; n ,l_'o)A (s',sl) e -JP" (2-26)
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cot

E Ut(Q1) = - Eoe -'/P"e'°s¢

.ft.

-g-- t

e 4
cot

2n _ _ _sm P'o
+('1-2n *'1) ]F[ pL 'g'('1-*'1)]

7t-(*1-*'1)]F[I_L2n lg-(*l-*'l)] - / cot +(*_+*'1)2nlF[ pL _g'(*1+ *'t )]

I ]cot F[ 13L _g-(.1+,'1)]
2n

P cl _ e -j p*l

sl(Pcl÷sl)

and

E i(Q2) Ds(L,*2,*'2",n ,P'o)A(s',s2 ) e
-/ P :2

(2-27)

=t E a(Q2) = -Eoe JP,un*'
e 4 g +(,2-,'2)

cot - F[ [3 L 'g "(*2- *'2)] +

2n _ _t psin [_'o 2n

cot
-('2-2n *'2) IF[ _L 'g-(.2-*'2) ] /[ _+(.2+*.2)]

cot . F[ _ L _Og.(,2+ *'2)] +
2n

P c2 _ e -j p*2

s2(Pc2+$2 )

A "C "-Program (listed in Appendix I) was created in order to calculate (2-25). The individual

contributions of the geometrical optics and diffraction fields are shown in Figure 2-6. The total

electric scattering fields of a bistatic scattering analysis are shown in Figure 2-7. It is interesting to

note that the total geometrical optics field only occurs at the specular point. Based on this work,
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geometricalopticsfailsto predict the correct bistatic scattered field when a plane wave is incident on

a fiat plate. The infinite radii of curvature of the incident field causes the equations to breakdown.

The observations made here confirm statements made in [1, pp. 756 and 805] about restrictions to

the incident wave and the geometry of the scatterer. Note the behavior of the diffraction fields in

Figure 2-6. They take on the characteristics in Figure 1-5, of the theoretical section, for an

observation distance far away from the scatterer.

Other diffraction types exist but were not accounted for in this investigation. One source of

diffracted fields is from creeping waves which travel around the outer rim of the disk and shed

diffracted rays tangentially as the surface wave propagates around the perimeter of the disk. The

procedure for obtaining this diffracted field contribution is discussed in [6].

If the electric field is obliquely incident at angles less than 15 degrees from the center axis,

equivalent currents need to be computed in order to correct for an axial caustic that occurs due to

the convergence of an infinite number of diffracted rays from the disk rim. At the incident angle of

120 degrees, this effect does not appear to effect the results in Figure 2-7.

To summarize the flat plate study, using GO and UTD to solve for the electric field in a bistatic

analysis results in two very localized (concentrated) groups of rays about the specular angle and the

incident boundary of the model. Geometrical optics fails to predict the correct bistatic scattered field

when a plane wave is incident on a fiat plate. Due to this outcome, a three dimensional analysis is not

necessary.
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Figure 2-6: Reflection and Diffraction Fields
From Circular Disk - Soft Polarization
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Figure 2-7: Total Bistatic Scattered Field
Plane Wave Incident on Disk - Soft Polarization
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Part B - Normal Incidence on a Circular Cylinder

An incident angle of normal incidence has initially been chosen due to simplicity. The

consequences of oblique incidence will be discussed later. A two dimensional model will first be

analyzed and if appropriate a three dimensional model will be constructed.

A two dimensional circular cylinder of radius 2.5 meters is shown in Figure 2-8. It is struck with

a uniform electric field plane wave for soft polarization such that

Ezi : Eoe -/ppcos,t (2-28)

Due to Fermat's principal of reflection, the GO scattered field is comprised of only the reflected field

in the illumination region. Recall, in the theoretical section it was explained that the surface waves

attenuate rapidly and therefore have negligible contribution in the illumination region for large

cylinders. In the shadow region, electromagnetic fields are solely due to surface diffraction from

reflection points having a incident field at grazing. From [4, pp. 83] the reflected field is

r ] a -/p(p-_m_)

p --® (far-field).

(2-29)

Upon writing the reflection field in the form of the radii of curvature as in [4], it can be shown that

!

t ] a cos _' e -/P"E '(p ,4,) : (aA'o) (2-30)
acos _'+2s
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Figure 2-8: Surface reflection and diffraction from a two dimensional cylinder.
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Figure 2-9: Surface reflection on illumination side of a circular cylinder.
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In order to calculate the reflected field at observation point P(p,_), it is necessary to find the angle

_' on the surface of the cylinder (on the illumination side) with respect to _ that gives the specular

reflection at P(p,t}). This is illustrated in Figure 2-9. This search routine was incorporated in the "C"

program of the cylinder problem (Appendix II).

As mentioned earlier, the diffraction fields originate from reflection points with grazing incident

field. Surface waves account for the diffracted fields in the shadow region. For greater continuity

between the illumination and shadow regions, an effective reflection boundary can be setup in order

to create a transition region about the shadow boundary. The various regions are shown in Figure

2-10. Special Airy functions are needed for this transition region. These are based on asymptotic

solutions of the exact canonical problem. From [4], the diffracted field for soft polarization can be

written as

E a(s) = Dff,(A) e-JP(_")
(2-31)

where

D
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()1_a
M= T

x =M!
a

m

Y:M

and

: p (x)
.I--

4
- ysgn (x)K_(ylxl) e

The modified Pekeris function is

p (x) : IS(x) + (2-32)

where p(x) is called the Pekeris function and is defined as

(x)

i__ _
6 _ e_nxe

e _ e
2_ _-' [A',(-'_,)] _

x>O (2-33)
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The zeros a, of the Airy function and the associated values are tabulated in [4].

x the Pekeris function is given as

(x) ej
2

For large negative

x -,. - eo (2-34)

When the argument x is zero,

J_En
6

p(0) -- 0.354 e

In (2-31), K.(x) is the modified Fresnel integral and is given in [4, pp. 20] as

g_ (x) r. -- x>O (2-35)

2 _ X 2+X+ 1

Expressions for the modified Pekeris and modified Fresnel functions were obtained from a steepest

descent of the exact eigenfunction solution of a cylinder. Then, an asymptotic expansion of the

residue series part of the solution is of the form of the Airy function. A special Airy function

relationship is used to ensure convergence of the integral expression for the total electric field in [4,

pp. 83].

In order to have a diffracted field on the reflection boundary in transition region one, the

diffraction point must be on the illumination side of the cyhnder. This does not obey the modified

Fermat's principal, but is to be viewed simply as a geometric path to assist in calculation of the

modified Pekeris function when x is negative.
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Figure 2-10: Transition region about the shadow boundary of a two dimensional

perfectly conducting circular cylinder.

The combined electric scattered field from the two dimensional circular cylinder is shown in Figure

2-11. The field in the illumination region is only due to the reflected field and the scattered field in

the shadow region is solely due to diffraction. These results were compared with the method of

moments for a two dimensional circular cylinder under the same conditions and parameters. The GO

and UTD solution failed to adequately model the scattering behavior.
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Figure 2-11: Total Scattered Electric Field
From Upper Half of Cylinder - Soft Polarization
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One explanation for the discrepancy between the method of moments solution and the one

obtained in this work is: the Pekeris function is constructed for the total field. Since the scattered

field does not include the incident field, this produces an error in the predicted pattern. The spike at

the shadow boundary is due to the fact that the incident field is not present in the calculations which

would compensate or (cancel) the discontinuity. The equations for negative argument of the Pekeris

function did produce a smooth transition across the reflection boundary, however. This is also shown

in Figure 2-11.

If the incident field was obliquely incident on the cylinder, the surface waves would follow a

geodesic in the form of a helical path, as shown in Figure 2-12. The only modification that would be

required is in (2-31), where a is replaced with the radii of curvature of the helical path. In this

respect, Figure 2-11 can be viewed simply as a cross section of a part of the helical path and not a

cylinder [4].

Due to the inadequateness of the GO and UTD solution using (2-30) and (2-31) for a two

dimensional circular cylinder, a three dimensional analysis will not be performed.
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oblique incidence
Figure 2-12: Path of surface wave on cylinder for oblique incidence.
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Part C - Oblique Incidence on a Ring

The analysis of this object will be very brief due to the outcomes of the inadequate solutions from

the circular disk and cylinder. A plane wave obliquely incident on the ring will have one primary

diffraction point. Like the circular disk, higher-order diffraction terms exist, but will not be

investigated here.

It is assumed that the off-axis diffraction point contributions are negligible or will cancel each

other out. Modeling the ring with one diffraction point on the principal plane is the same as that of

Figure 1-6. It has been the author's experience that the curved edge diffraction fields are very similar

to the straight edge diffraction fields when p is sufficiently far removed from the diffraction point.

Therefore, one would expect a diffraction pattern similar to the combination of Figures 5a and 5b.

Since a three dimensional problem has been ruled unobtainable using the present GO and GTD

formulas for the circular disk and cylinder, it will not be attempted here.

CONCLUSION

In this report, plane wave scattering from a finite circular cylinder was investigated using the

geometrical optics and the geometrical theory of diffraction. In the literature, GO and GTD are used

extensively in monostatic radar cross-section analyses., however no information on bistatic scattering

using these methods could be found. Based on the results presented, GO fails to predict the correct

bistatic scattering field when a plane wave is incident on either a fiat plate or cylinder. As stated

previously, these results are in agreement with statements made in [ 1] about restrictions to the

incident wave and the geometry of the scatterer.

For the cylinder, it was learned that the equations used for obtaining the scattered fields were
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basedon equations of the total electric field about a cylinder. As a result, GTD could not

appropriately satisfy the discontinuity at the shadow boundary. In addition, the equations used were

based on asymptotic expansions of the exact canonical solution for a cylinder, and tend not to

converge properly at the shadow boundary. The Pekeris equations are for large argument rather than

small arguments. This illustrates how extensive GTD is used in solving radar cross-section problems.

As stated earher, with some regret, a three dimensional analysis was not possible. However, a

better insight into the strengths and limitations of GO and GTD has been attained..
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APPENDIX I

The code in this appendix has been written in C, using the Borland turbo C compiler. This

program will compute and plot the electric field quantity of a uniform plane wave onto a disk-

shapped scatterer. The code is "Project Grouped" together with the following files:

GTDCURVE.C, EREFLECT.C, AC_ATTEN.C, DIYFCOEF.C, FRESNEL.C, PHASE.C, and

CPLXMATH.C

/* GTDCURVE C

This is the main trtmk of the GTD program for oomputing and

plotting the eleOxic field quantity of a tmffonn pleme wave

onto a disk-shapped surface. The observation distance
is r meters. THIS IS FOR TWO EDGES AND SOFT POLARIZATION

This program includes reflection and diffracitun fields.

Bigatic Scattering Case

/* Header Files */

#include<_.dio.h>

#include<math.h>

#include"qplxmathJY'

/* Prototype Functions */

stmct Complex Ereflect(double a,double th,double th_i, double beta);

Oxuot Complex A_c(double s, double pc);

struct Complex dif_coef(double r, double th_ray, double _p_ray, double betaO_mc,

double n, double Lro, double Lm, int edge);

struct Complex phase_ill(double be_, double s, hit);

/* External Variable Declaration */

/* These variables originate in DIFFCOEF.C */

sU'uct Complex de_soft, de_hard, de_i, de r,

f* Beghming of Main. *f

mare0
{
struct Complex E_di_2][361], E_obs[361 ], E_refl[361 ],as,tenv¢,

EO_smq, phase, dif term;

double th_i, r, a, freq, c, pi, lambda, beta, beta0_inc, n. sam,

s, thp_ray, l.xo, Lm, 1, pc, th_ray, norm_obs, temp, cony dtr,

omv_rtd, th neso,th_nem, toL temp2, thr, phir, I_i_ra_

mt th, phi, edge;

FILE *fp_out;

/* Initializing vectors */

for(th=O; th<361; 01-+-+)

E_refl[th].real--0.;

E_refl[th].imag=O.;

E_dilt]0] [th].reai=O.;

E difll0llth].imag--0.',
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E_d_ t ][_].real--O.;

E obs[th].real=O.;

E_o_[_].mg=O.;
)

to]=l .e-6;

ch'scrO; /* clear sc_e_ *I

/* r is the observation distance (in meters) from center
of scatter. *I

r= 300.;

/* Scatterer Specifications */

a=2.5, /*radius of disk in meters.*/

/* Fad of Scatterer Specifications */

/*_Specifications of Incident Electric Fieid-_*/

freq= 1.57542e+9; /*operating frequency*/

/* Direction of Propagation of Incideut Wave */

th_i= 120.;

/*_End of Specifications of Incident Electric Field--------*/

pi=4.*atan(l.);
c = 2.99795638e+8,

iambda = c/freq;

beta = 2.*piflambda;

oonv__r=pi/180.;

c_nv_rtd= 180./pi;

/*--Begirming of Calculations to determine the reflected

attd diffracted electric fields at the observation point.--*/

/* Calculation of the diffracted electric field from scatterer. */

/* The refleO.ed field is also calculated in this routine. */

/* ray coordinate values */
n=2.;

betaO_inc=90.;

edge= 1; /* flag for otawed edge diffraction */

/* Edge I calculations */

thp_ray=th_i;

for(phi=O; phi<361; phi++)

{
phir--( (doubl e)phi)* _rt v_dl.r,

/* s isthe distanoe fi_m diffraction point to obs. I_*/

s=sq_(r*r)+(a *a )+(2. *a *r*oos(phir)));

lflli_ray--(s*s+a*a-f*r)/(2.*a*s),

if(fabs(fabs(_i ray)-l.) < tol)/* Argument in acos(x) must be -1< = x <=1. */

{
if(phi ray > 0.) phi_ray= ! .;

if(_i_ray < 0.) phi ray= -1 .;

}

phi_ray=aces(phi_ray);/* in radians*/

if(phi> 180) phi_ray=2.*pi-phi_ray,
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th_ray=phi_ray*conv ttd;

if(th ray <= 1S0.-th_i) E_rcflLohil=Ereflect(r,phir.th_i,beta);

E_refl[phi].real*_l.;

E_refl[phi].imag*_ 1.;

E0_surf.rcal=cos(beta* a* cos(th_i *conv_dtr));

E0_suff..imag---sin(beta * a *coKth_i*conv_dtt ));

Lro---s/lambda,

Lm--s/lambda;

l=s/lambda;

p_---a/(cos(th i*c_nv_dtt)+c_i_ray));

_=A_cO, pc);/*Attenuation P_amctcr*/

dif_tcan --dif_cocf(l,th_ray,tl__ray,lx_aO_in c,n,l_xo, I_xn,ed _ );

d__torm.rcal*--_tt(lambda);/* urm_'naliz_ diffraction cool.*/

dc_i.real* --sqrt(lambda );

dc_i.imag*--sqrt(lambda);

dc_r.re_l*--sqtt(lambda);

dc r.imag*=sqrt(lambda);
phase-_ue fit0,eta,s,0);
E_diflI0 ][phi l=MultiplyfE0_surf,dff_tcrm);

E_di_O] [phi]=Multiply(E_di_0] [phil,as);

E_diffi0] lphi|=Multiply(E difllOllphi],phase);

dc_i=Multiply(dc_i,as);

dc_r=Multiply(dc_r, as);

dc_i=Multiply(dc_i4_hase);

de_r= Multiply(dc_r,phase),

/*Ed_ 2 calculatiom*/

for(phi=O; phi<361; phi++)

{
phir=((double)phi)*eonv_dtr,
/* s isle dLqtance from diffraction point to obs. _.*/

s--sqxt((r*r)+(a *a)-(2.* a*r*oos(phir)));

phi_ray=(rthr-s *s-a *a)/(2.*a *s);

if(fabs(fabs(phi ray)-l.) < tol)/* Argument in ao0s(x) must be -1< = x <=1. */

(
if(phi_ray > 0.) phi_ray = 14

if(phi_ray < 0.)phi_ray = -14

}

phi_ray=acos(phiray);/* in radiams*/

if_i> ! 80) phi_ray=2.*pi-phi_ray,

if(phiray <= pi) th_ray= ! 80.-phi_ray*conv_rtd',

iffphi_ray > pi) th_ray=540.-(#fi ray*oonv_rtd);

thp_ray= 180.-th_i;

if((phi_ray*conv rtd) < (1 g0.4h_i))

(
E_refl[phil.reat=O.0;

E refl Ltfai].imag=0.0,

}
E0_surf..real= cos(bcta*a*oos(th i* oonv_dtt)),

E0_surf.imag= sin(beta *a *¢os(th_i*omv_dtr)),

l.xo=s/lambda;

Lm--s/lambda,

I=s/iambda,

pc=a/(cos(th_i* oonv dtr)+tos(phi_ray));
as=A_cO, pc);/*Attmuatim Parameter*/

dif_tema=dif_coef0,th_ray,thp ray,bcta0_mc,n, Lto,Lm,cdge);

dff_term.real *=sq_lambda);

dif_tm_.imag*---,_a_ );
dc i.rcal*-_at_t(lambda);

dc_i.imag* =sqtt(lambdO;

dc r.real *=sq_t( hmbda);

dc_r.imag* =sq_(lambda );

phase=phase fit(beta, s, 0);
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E_diffi 1][Phil=Multiply(E0_surf, dff_term),
E_di_ l][phi]=Multiply(E_diflt !l[phi|,_s);
E_difi_ 1][/_ai]=Multiply(E_di_ ! ]Lt_i],phase);
dc_i=Multiply(dc_i, as);
dc_r=Multiply(dc_r, as);
dc_i=Multiply(dc_i,phase);
dc_r=Multiply(dc_r,#lase);

for(th---0,-th<361;th++)/*Observ_iota Efield Diffraction fields.*f
{

E_obsIthl=Ada(E_rellIthkE_ailll01Ithl);
E_obslthl=Add(E_obslthl,E_diflI 1][thl);

}
iff( fp_o_a--fopcn( "eIields.dnt","wt" ))==NULL) {

puts("c_rmot open dields.out file_a");
exit(l);
}

fot(lh=O,lh <361 ,-th++)

{
tempc=Add(E_difl]0 ][thl,E_difll I l[th l);
fprintfffp_out,"*/at %e */,e */oe*/oe_a",th, Ma_aitude(E_refl[thl),

Ma_ude(E_attq01Ithl), Magnnuae(E aiffll Ilthl),
Ma_aitude(tempc));

}
fdose(fp_out);

if((fp_out--fopen("eo_db.dat ",'X_t"))_NULL) {

puts('cnr, na open eobsdb.dat file_");
exit(]);
}

for(th=0;th<361 ;th++)
{
teml_ Ma_nitude(E_obs[th] );
temp2=20.*logl 0(temp);
flnint_fp_out,"*/,d */,fo/d_", th, trap, temp2);
}

fdose(fp_out);

return(0);

}

/* EREFLECT.C

This routine will compute the direct a_d refleO.ed components ofthe
electric field plme wave. (See Bahmisp_ge 811.)

#include <m_.h>

#include "cplxmalh.h"

slract Complex Eteflect(double r,double theta,double lheta_p,double beta)
{
stn_ct Complex green fi_,Ego;
double pi, cony_tilt,

pi=4.*atan(1.);
conv_dtr-_ ! 80.;
th_ta*=conv_dlt;,
theta_p*=conv_dtr,

8re_a_Jia.reai=cos(beta *r*cos(theta+lheta..p));
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green_fn.imag=sin(beta *r*cos(theta +theta_p));

retum(grcen_fia);
}
/* AC ATTEN.C

This program will calculate the attenuation factor A
for curved edge diffraction.
(See Bala_aispage 819, Equation 13-100.)

#include<math.h>

#include"cplxmath.h"

struct Complex A_c(double s, double pc)
{
_mct Complex aresult;
double a;

a=pc/(s*(pc+s));
i_a>O.)
{

aresult.real=sqrt(a);
aresult.imag=0.;

}
retum(aresult);
}

}
else

{
aresultreal--0.;
aresulLimag=sc_-a);

/* DIFFCOEF.C

This routine computes the uniform diffraction coefficients

This program was converted from FORTRAN (found at end of Chapter 13
haBalanis) By Francis W. Foist - 1994

The necessary modifications were made so that straight or edge
diffraction coefficients cmabe calculated

#include<sldio.h>

#include<math.h>

#include"cplxmath.h"

struct Complex Iff(double X);

/* Declarationof external variables*/

extem struct Complex de_soft, de_hard, de_i, de_r,

struct Complex dif_coef(double ILdouble phi,double lxhip,double beta_inc,
double n,double Lro,double Lm,hat edge)

{
stmct Convlex ct, 1_14I, d[4], term, tff_ret;
double pi, ulpi, conv_dtr, sin_beta, did, uth, betalL N, dN_l_aet,

integer, tiN, sml_toL tol, nng, A, X, Y;
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int siva, i;

FILE *fp_out;

f* setting _ *t

pi=4.*ata_( 1.);

¢t.rcal=-.05626977;

O_ima g = .05626977;

mpi = 159.15494309e-3;

sml_tol=.001;
toi = l.e-8;

omv_dtr-_180.;

#tip *=cmv at;,
sin_beta=_in(b__inc*conv dtr);

dc_so/Lrcal=0.0;

ac_sofl.itmg=O.O;
dc_hart[real=0.0;

dc_har_imag=0.0;

if(labs(n-0.5 )<sml_tol) retum(dc_solLdc hard);

dkl--2.*pi*R;
ufn=l./_;

betaR=vhi-phip,

term.rcal-xt.rcai/(n *sin_beta);

tern_imag=ct.imag/(n *sin_beta );

sign=l;

i=0;

whil¢(i <= 3)

{
if(i==2 && edge==l) dld=2.*pi*1.a-o;
if(i:3 && edge==l) dld--2.*pi*Ifn;

dN=ufn*(0.5 *sign+mpi*betaR);

]his part was added in order to round "dN" up or down. The numerical

accuracy ofdN was not allowing N to be the proper integer value.*/

dN_fraot--rnodf(dN,&mteger);

if(dN < o.)

{
if(fabs(0.5-dN_fract)<= tol) dN= integer-0.5;
if(fabs(1.0-dN_fi-act) <= tol) dN= mtcger-l.0;

if(aN >--0.)

if(fabs(0.5-dN_fract) <= toi) dN= integer+0.5;

if(fabs(1.0-dN_fract) <= tol) dN= h_ger+ 1.0;

}

if(dN<tol) N=dN-0.5;

if(dN >= tol) N=dN+0.5;

modffN,&integer);
N--integer,

mg=2.*pi*n*N-betaR;

A=2.*oos(0.5 *mag)*cos(0.5 *ang),
X=dld*A;

Y=pi+sign*betaR;

if(fabs(X) >= l.e-10)

{
af ra=mrx),

tt [i].real=tff_r*t.rcal/t_(0.5 *Y *urn);

ft[i].imag=/tf_r_imag/tan(0.5 * Y *urn);
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}
else

{

fl[i].real=O,O,
fqil.imag---o.o;
igfabs(coKO.5*Y*ufn)) >= l.e-3)
{

iffV < 0.)

{

}
if(Y > 0.)
{

fl[i].real = -1.7725*sqrt(did);
R[i].imag= -1.7725*sqrt(dkl);

Rli].real= 1.7725*sqrt(cad);
fl[i].imag = 1.7725*sqrt(dld);

}
fl[i].real=fl[il.real*n;
R[i].imag--(fl[i].imag-(2.*_d*(pi-sign *ang)))*n;

}
}
si_a=-siga;

d[i} =Multiply(term,fl [i]);
if(i> = 1) be_R=phi+phip;
++i;

}
de_i=Add(dI0l,d[ 1l);
de r=Add(d[2],d[3]);
de _sott=Sut_ract(de_iAc_r);
de_hard=Add(dc_i,de_r);
mum(desoft);
}

/* FRESNEL.C

**********************************************************************

This program computes the Fremel tnmsition function
(Converted from FORTRAN code found atlhe _d of Chapter 13
in Balanis, Advmc_l Engineering Eleotroma_dics.

#_aclud¢ <math&>

#include "cplxmath.h"

struct Complex fir(double XF)
{

_'uet Complex fx[8], fxx[8], Ft_ Ftf_temp, exp._term;
double pi, XX[8], X;
mtn;

/* Conamts used for linear inteq_olatian */

pi=4.*atan(1.);

xx[o]=o.3;
XXII]=0.5;
xx[21=o.7;
XX[3I=I.0;
XX[4]=I.5;
xx151=2.3;
XX[61=4.0;
XX[7]=5.5;

fx[0].r_l=0.5729;

fx[01.in_g=0.2677;
fx[ I].real=0.6768;
fx[ 1].imag-_.2682;
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fxl2].real--O. 7439;

fx[2].imag=0.2549;

fx[3].real--0.8095;

fx[3],imag=0.2322,

fx[4].real=0.8730;

fx[4].imag=O. 1982;

fx[5 ].real--0.9240;

fx[5].imag=0.1577:

fx[61.real=0.9658;

fx[6].imag=0.1073;

fx[7].real=0.9797,

fx[7].imag-_.0828;

fxx[Ol.real--O.O;

fxx[Ol.hnag=O.O,
fxx[ 1].real=0.5195;

fxx[1].imag=o.oo25;
fxx[2].reai--0.3355;

fxx[2].imag=-.0665;

fxx[3 ].real=O+2 ! 87,

fxx[3 ].imag=-.0757;

fxx[4].real=O. 1270;

fxx[4].imag=-.0680;

fxx[5 ].real=O.0638;

fxx[Sl.imag=-.0506;
fxx[6].real=O.0246;

fxx[6].imag----.0296;

fxx[7].real=O.O093;

fxx[7].imag---.O i 63;

exp_term.real=0.70710678;

exp_ter_imag=0.70710678;
X--fabs(XF);
if(x > 5.5)
{

Fir.real= 1.+(75./( 16.*X'X)-0.75 )* 1./(X'X);

Fff.imag--(0.5-15./(8.*X'X))* 1./X;

}
else

{
iffX >= 0.3)

{
n=l;

while( (X >=XX[n]) && (n<=6)) n++;

}

else

{

I_d'.real--fxx[nl.real*(X-X,_[nl)+fx[n].real;

l_.imag=fxx[nl.imag*CX-XX[nl )+fx[nl.ima _

Ftf.real=sqal(pi*X)-2. *X*exp._terr_ real;

Ftf.imag---2. *X*exp_term.imag_

Ftf_tcmp.real=2./3.*X*X*exp_term.real;

Ftf temp.imag-_2./3. *X*X*exp_termimag;

Ptt'=Subtract(Ft_Ftf_ten_);

hf=Mu_.iply(Rf;exp_tcrm);
1_'_temp.rca1-_os(X);
nCtemp.ima_(X);
P,f=Mu_#y(hf,Ftf_ten_);

}
}
if(XF< O) Fff..imag*=(-I.O);

_urn(l_');
}

/* PHASE FN.C
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This routine will calculate the phase factor of the respective wave.

/* flag is a marker that specifies e_(+j*beta*s) or e_(-j*beta*s) */

#include<math.h>

#include"cplxmath_h"

muct Complex phase_fn(doublebetaO,double s,intflag)

{

_t.,'uct Complex phase;

phase.real_x_s(betaO*s);

phase.imag=--sin(betaO *s);

if(flag== 1) phase.imag=sm(betaO*s);

mum(phase);
}

/* CPLXMATH.C

#include<ma_ _h>

#include"cplxmath.h"

/* */

/* JeffSwart October, 1992 Turbo C++ 3.0 */
/* */

/* Basic Complex math functions. PrO.otypes are located in CPI.,XMATH.H. */
/* */

/* l_adToDe_ will convert a value given in radians as a double to the */

/* equivale_ value in degrees, md retum the resuR as a double. */

/* q3ivComplexCart' will divide two Complex numbers given in Cartesi_ */
/* RENAMED TO Divide: J. richie, 2/93

/* form as structures of type 'cart_Complex*, and return the result in */

/* Cartesian form as a gaucture oftype 'cart_Complex'. */
*****************************************************************************

_ruct Complex Divide(struct Complex num,

s_*uct Complex denom)
{

/* Variable declarations */

_truct Complex /* Polar form of numerator */

/* Polar form ofdenon_nator
result , /* Polar form of result */

double mag_l _tag_2,_gle_ l,angie_2;

/* Code */

/* Convert numerator and denominator to polar form

mag_ 1 =Ma_fitude(num);

*/

*/
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mag_2=Magaitude(dmom);

_mgle_l =atan2 (num.imag,nmrt real);

angle_2= atan2(den_imag, denom.real);

/* Calcul_e polar form of result

mag_ l--mag_ 1/mag_2;
angle_ 1 =angle_l-angle_2,

resulLreal--mag_ l'cos(angle 1);

remlLimag=mag_ 1 *sin(angle_ 1);

/* Return Cartesian form of result

return result;

} /* End function T)ivide'

*/

/*

ADDED BY J. RICHIE, JANUARY 1993

Function to obtain product of two Complex numbers

gruct Complex Multiply(struot Complex numl,

{
/* Variable declarations

struct Complex result,

strua Complex num2)

/* Code

resulLreal=numl.real*num2.reai-numl .imag*num2.imag_

result.hnag=num 1 .realtnum2.imag+num i .imaganum2.real;

return result,

/* Function to obtain sum oftwo Complex numbers

gruct Complex add2)

struct Complex Add(amct Complex addl,

{
/* Variable declarations

struct Complex result;

/* Code

resulLreal=addl.real+add2.real;

resulLimag=add l.imag+add2.imag;

return result;

/* Function to obtain difference of two Complex numbers

_uct Complex mbm)

struct Complex Suttract(gruct Complex mbp,

{
/* Variable declarations

gruct Complex resuR,

/* Code

resulL rcal--subp.real-subm.real;

result.imag=subp.imag-subm.imag

*/

*/

*/

*/

*/

*/
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retum result;

/* Function to return the magnitude of a Complex number

double MagnRude(_uct Coraplex z)

double mag_value;

mag value-_qrt((z.real*z.real) + (z.imag*z.imag));

rcgum mag_value;

/* Function to return the Complex conjugate of a Complex number */

gtruct Complex Conjugate(struct Complex z)

{
gruct Complex conjug,

oonjug.reai=_real,

conjugimag=(- 1)*z.imag

return conjug;

}
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APPENDIX H

The code in this Appendix was used to

The code in this appendix has been written in C, using the Borland turbo C compiler. This

program will computeand plot the electric field quantity of a uniform plane wave onto a circular

cylinder. This program is "Project Grouped" together with the following files:

GTDCYLDR.C, PEKERIS.C, K_FN.C, PHASE.C, and CPLXMATH.C

/* GTDCYLDR.C

This is the main trunk of the GTD pvograrn for oomputing and

plo_tingthe eleoLric field quantity of a uniform plane wave

onto a circular cylinder. The observaticm distance
is r meters.

The diffracted fields are cun_ntly set for so_ polarization.

/* Header Files */

#include <¢.dio.h >

#include <math.h>

#include "¢plxmmh.h"

/* Prototype Functions */

double sfind(double a, double r, double lahir);

gruot Complex phase_ill(double beta, double s, int p_flag);

struct Complex pekeris(double x);

struct Complex K_fn(double x);

/* External Variable Declaration*/

double phi_p;

/* Beginning of Main. *t

main()

{

stmct Complex E go[361 ], E_difl]2][361 ], E_obs[361 ], E0_mrf, phase,

Efactor, pvalue, kvalue, comp_tmp, pxy,

double r, a, freq, c, lambda, pi, beta, oonv_dtr, cony rtd, lahir,

s, atton, m, y, psi, I11,tau, x, sgn_mth, phi_sga, temp,

norm_term;
mt _i, d_in¢;,

FILE *fp_out;

pi=4.*atan(1.);

oonv_dtr=pi/180.;

¢onv_rtd= 180./pi;

r=300.;/* Observation distmce _ o_r ofcylind_ */

a---2.5;/" radius of cylinder *t

fi'eq= 1.57542e+9, /*op_a_ng frcqumcy*/

c = 2.99795638e+8;

lambda = e/freq;

beta = 2.*pi/lambda;

eh'_rO; /* dear ou_p_ screen "1

/* Initializing vectors */
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for(l_i--O; phi<361; phi++)
{

E go[lCni].reai=O.;

E go[l_il.imag=O.;

E_di_0][phil.real=O.;

E diffI01lptail.imag=O.;

E_difl[ 1lll0hil.real=O.;

E_di_ 1 lIphil.in_g=O.;

E obs[lohi].real--O.;

E_obs[10hil.imag_O.;

ff((fp_cut=fopen("cylmder.dat',"wt "))==NULL)
{

puts("cmmot open cylinder.dat file_n");

exit(l),

)

/*_Beginning of Calculatkms to determine the reflected

emd diffracted electric fields at the observation poh_m*/

/*Calculation of the reflected elec¢fic field from scatterer. */

forQ_hi=4;phi< 181 ;phi++)
(

phir--(double)phi;

i/_ir > 9o.) #_ir--l.*O S0.-_ir);
l_ir*=conv_dW,

< 180) s=sfind(a, r, phir);
i_i == lso)
{

s--r-a;

phi_p--O.;
}
iffphir<0.) phit+=pi;

phir*=conv_rtd;

E0_su_.real=-cos(beta *a *oos(phi_p));

E0_sur£.ima_zh_(beta *a *cos(phi_p));
ph_ase__(beta, s, 0);
arran _ a *cos(phi_.p))/( a'cos(phi p)+2. *s);
auen=sq_(auon);
E_go[phi]=Multiply(E0_surf4_ase);
E_go[phi] .real* =aUen;

E go[phil.imag* =atten;

fprintf(fp_out,'°/*d °/*f */af */*f°/_ia",phi, phir, phi_p*cunv_rtd,

s, Magnitude(E go[phil ));
}
felose(fp_out);

/*Calculation of the diffracted electric field from scatterer. */

if( (__o_ --folx_( "cyldit_.da","_a-))===N_iLL )

{

puts("c_m_ol open cyldiflEdat file_n");

}

s= r*_a*a;

s=s_t(s);

m=4_a*a/2.;

m=pow(m,.33333333);

y=scpt(b_*s/2.)* l./m;

psi=acos(a/r); /* in radians */
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/* Calculation of diffracted field on the shadow boondary */
phi__p-_2.;/* ha radians */

EO surf.real=-I. *cm(baa *a *cOS(l_iA_));

E0_surf.imag---- 1.*sin(beta *a *¢OS(l_i_p));

phJ_e=rlaase_f_, s, 0);
Efactor.real= 0.354/y*cos(pi/12.);

Efaaor.imag-----0.354/y*_ma(pi/12.);

E di_0][0]=Multiply(E0 surf, phase);

E_dittI01101=Multiply(E_ditlI01[01,Efaotor);

/* Calculation of the diffracted field ha the shadow region */
Oi_sgn=- 1.;

for(d_hac=0;d inc<2 ;d_hae++ )
{

fo_(phi= 89 ;phi > -4;lahi- )

{
lahir--((double)_i)* eonv_dtr*phi_sgn;

if(l_i=--90)l/air=g9.522529 *cunv_dt._i_sga;

tau=th*a;

x=m*th;

pvalue-q_eris(x);
kvalue=K_fn(y*fabs(x));

sgn_mth= 1.;

if(m*th < 0.) ssn mth=-I.;

cump_tmp=Multlply0cvalue,l_ _e_fn (pi/4., 1., I ));

comp_tmp.real* =y*sgn_mth;

corap_tmp,imag* --y*sgn_n-sh;

pxy=Sul_ract(pvalue, cump_tmp);

Oase--q_ase__(beta, tau+s, 0);
comp_tmp.r_al=(-1./sqa(Ima))*r_
cump_tn_.hmg--( l./ma0_ta))*m;
E_diff[d_hacl[90-phil=Multiply(E0_surf,comp_tmp);
E_diffld_incl[90-phi]=Multiply(E_dittld_incl[90-1xhil,pxy);
E ditlld_inc]Ig0-_il=Multiply(E_diltld_hacllg0-phil,phase);
E_diflld_hacl[90.t3hil.re,al/_Xla't(s);
E_diff[d_hac][90-1shi].imag/--sqrt(s);

fprintf(fp_out,'_/,d */.f */,e_n", d inc, phir*eonv_ad,

Ma gnitude(E_ditIId_hacl [90-phil));
}
phi_sga=l.;

for(_i=4;phi< I81;phi++)

(

flxintf(fp_out,"%d%e_n"4dai,Ma_aitude(E_go[lahi]));
}
fdosc(__out);

_(fp_ont--fopen('e_yldb.dat','w'))==NULL){
puts("camaot open _yldb.dat file_n");
exit(l);
}

fot_hi= Ikdai<I81Tlai++)

{
tm_ Ma_nimd__go[_l),
tem_20.*Iogl 0(letup);

fprintf(fp_o_,"*/,d*/,e_a",_i,letup);
}

fdo_fp_out),
return(0);
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Routine to find dist_ce value Y and angle phi_p from known
observation distance rho and angle phi.

double sfmd(double a, double r, double phi)
{
double mum, pi, conv_dtr, sden, Remp, s, rdiff, tol, smax;
im phi_i, i, fla_

tol=l.e-12;
pi_,*atan(1.),
c_v_du--pi/i 80.;

smax=sqxt(r*r-a*a);
s=-l.;
for(phi_i= 1;phi_i<91 ;phi i++)
{

phi_p=(double)phi_i;
phi p*=conv_dtr;
mum=- 1.*(a*cos(_i p)*sin(l_hi)+a *sin(phiA))*cos(phi));
sden=cos(2.*phi_p)*sin(phi)+sin(2.*phi_p)*cos(phi);
if(labs(mum) < tol && fabs(sden) < tol)

/*perform L_opital's Rule*/
{

mum=a *(sin(phi_p)*sin(phi)- cos(plfi p)*cos(phi));
sden=2.*(cos(2.*phi p)*cor(phi) - sin(2.*phiA))*sm(phi));
s--mum./sden;
}

if(fabs(sden) > toi ) s=mum/sdon; /* Singularity - skip over */
if( s>= 0. && (s<=mnax)) /* 0.<= s <= (s=sqxt(r*r-a*a))*/
{

rt_v=a *a+s*s+2.*a *s*cos(-phi_});
nen_sqn(rtemp);
rdiff_-_emp;
if(fabs(rdiff) <l.e-6) mum(s);
if(rdiff > 0.)

{
flag=0;
phi p-=l.*conv_dU;
i=0;
while(flag=--0)

{
i++;

phi_p+= 1./pow(2.,i)*oonv_dtr;
mum=- 1.*(a *oos(phi p)*tan(phi)+a *sin(phiAl));
sden=cos(2. *phi_p)*tan(phi)+sin(2. *phi_p);
if(fabs(sden) > tol) s_mum/sdon;
/*ffs is >0 but less than the desired value, the denominator

might go to zero. To account for this, the following if
statement is used to increment the angle phi_p sud_ that

s becomes greater than the desired value. When this happens
the sem'_ routine resumes as normal.*/

if(fabs(sden) <= tol) phip+= l./pow(2.,i)*conv_dtr,
Remp=a *a+s*a+2. *a*s*oos(.phi_p);
rten_-_lrt(rtemp);
rdiff_-nemp;
if(rdiff > 0. )phi_p-= l./pow(2.,i)*c_mv_dtr,
ifffabs(rdiff) < 1.e-6) flag=l;
}

mum(s);
}

}

printfCerror in finding s %d %Pn", phi_i, s);
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exit(l);

return(0);

/* PEKERIS.C

Thh program will calculate the Pckefis function.

#include <math.h>

#include "cplxmath.h"

_-uct Complex pekeris(double x)

(

struct Complex exp_tn_, exp_t_ psum, pout;

double pi, ayha[3], Ai_p[3], arg_o_, atg_sin;
int n;

pi=4.*atan(l.),

exp_tmp.real=- 1.*cca(pi/6.)/(2.*sqrt(pi));

exp_tmp.imag--_ l.*sin(pi/6.)/(2.*sqrt(pi));

all,ha[ 1l---2.338,

a_l_a[2]=4.088;
Ai p[H=.701;
Ai_p[2]=-.803;

psur_real---O.;

psum.imag--0.;

for(n= 1 ;n<3 ;n++)

{
arg__cos=atpha[n]*x*oos(5.*pi/6.);

arg__sin =a_a In ]*x'sin(5. *pi/6.);

exp_tenn.real= cos(arg_sin )*(cosh( arg_cos)+sinh( arg_.oos));

exp_term.imag---sin(arg sin)*(cosh(argoos)+sinh(argcos));
exp_ termreal*= 1./(Ai__p[n] *Ai__p[n]);

cxp_term.imag*= 1./(Ai_p[n]*Ai Pin]),

psum=Add(psum, exp_term);
}

pout=Multiply(cxp_tn_,lmm_);
return pout;

}

K FN.C
/tit tt Sllllt ll*t_tt *tltt t t _W_ttt_tm_t t t **t_*_*tt****t tttt ttlt_t*****t **

This prod'am will calculate the Modified Fre_¢l function.

(Based m EQN 2.40 in G.L. James - Geometrical Theory of Diffraction

for Eleatomagnetic Waves, 3rd eeL)
*********************************************************************

#include <math.h>

#indude "cplxmath_"

struct Con_lex K_fn(double x)

{

struct Complex exp_term, kout;

double pi, c, arg:

pi=4.*atan(l.);
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e=2.*sqrt(pi*x*x+x+ 1.);
arg=atam(x*x+ 1.5 *x+ l.-pi/4.);

exp term.re_l=o_argO;
e__tema.imng---sin(ar_;

koW_tea I=exp__term.real/e',
kout.imag----exp_term.imag/e;

return kout;
}
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